Skip to Content
Merck
All Photos(3)

Documents

704105

Sigma-Aldrich

Polycaprolactone

average Mn 45,000

Synonym(s):

2-Oxepanone homopolymer, 6-Caprolactone polymer

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
(C6H10O2)n
UNSPSC Code:
12162002
NACRES:
NA.21

form

pellets

Quality Level

melt index

1.8 g/10 min (80 °C, 44 psi)

mol wt

Mn 40,000-50,000
Mw 48,000-90,000
average Mn 45,000

mp

56-64 °C
60 °C (lit.)

Looking for similar products? Visit Product Comparison Guide

Related Categories

General description

Polycaprolactone (PCL) is a semi-crystalline linear resorbable aliphatic polyester that is composed of repeating units of hexanoate. It has good mechanical properties, miscibility, and biodegradability. PCL is a soft and hard-tissue compatible material that can be used in sutures and drug delivery systems.

Application

PCL can form a nanocomposite with graphene for the fabrication of biodegradable systems for bone tissue engineering.

Features and Benefits

Biodegradable polymer
Non-toxic, biodegradable in soil, broad miscibility, mechanical compatibility with many polymers and good adhesion to a broad spectrum of substrates.

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Customers Also Viewed

A novel degradable polycaprolactone networks for tissue engineering
Kweon H, et al.
Biomaterials, 24(5), 801-808 (2003)
Covalently linked biocompatible graphenepolycaprolactone composites for tissue engineering
Sayyar S, et al.
Carbon, 52(5), 296-304 (2013)
Properties of thermoplastic blends: starch-polycaprolactone
Averous L, et al.
Polymer, 41(11), 4157-4167 (2000)
Synthesis of polycaprolactone: a review
Labet M and Thielemans W
Chemical Society Reviews, 38(12), 3484-3504 (2009)
Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering
Williams JM, et al.
Biomaterials, 26(23), 4817-4827 (2005)

Articles

In the past two decades, tissue engineering and regenerative medicine have become important interdisciplinary fields that span biology, chemistry, engineering, and medicine.

Innovations in polymer technology have had a significant impact on the advancement of novel drug delivery systems.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service