Skip to Content
Merck
All Photos(1)

Documents

693537

Sigma-Aldrich

R-MOP

≥94%

Synonym(s):

(R)-(+)-2-(Diphenylphosphino)-2′-methoxy-1,1′-binaphthyl

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
C33H25OP
CAS Number:
Molecular Weight:
468.52
MDL number:
UNSPSC Code:
12352005
PubChem Substance ID:

Assay

≥94%

form

solid

optical activity

[α]20/D +94°, c = 0.5 in chloroform

SMILES string

COc1ccc2ccccc2c1-c3c(ccc4ccccc34)P(c5ccccc5)c6ccccc6

InChI

1S/C33H25OP/c1-34-30-22-20-24-12-8-10-18-28(24)32(30)33-29-19-11-9-13-25(29)21-23-31(33)35(26-14-4-2-5-15-26)27-16-6-3-7-17-27/h2-23H,1H3

InChI key

KRWTWSSMURUMDE-UHFFFAOYSA-N

General description

R-MOP is a phosphine ligand with a bis-naphthalene backbone.

Application

Takasago Ligands and Complexes for Asymmetric Reactions

Ligand used in palladium-catalyzed asymmetric hydrosilylation of olefins, palladium-catalyzed reduction of allylic esters, rhodium-catalyzed asymmetric addition reactions, and asymmetric amination reactions catalyzed by copper(I) complexes.

Legal Information

Sold in collaboration with Takasago for research purposes only. US5231202

Storage Class Code

13 - Non Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

A new optically active monodentate phosphine ligand, (R)-(+)-3-diphenylphosphino-3'-methoxy-4,4'-biphenanthryl (MOP-phen): preparation and use for palladium-catalyzed asymmetric reduction of allylic esters with formic acid
Hayashi, T.
Synthesis, 526-532 (1994)
Uozomi, Y.
Journal of the American Chemical Society, 9887-9887 (1991)
Rhodium-catalyzed asymmetric addition of aryl- and alkenylboronic acids to isatins.
Ryo Shintani et al.
Angewandte Chemie (International ed. in English), 45(20), 3353-3356 (2006-04-06)
The synthesis of P-stereogenic MOP analogues and their use in rhodium catalyzed asymmetric addition
Clarke, E. F.; et al.
Journal of Organometallic Chemistry, 696, 3608-3615 (2011)
T Hayashi
Accounts of chemical research, 33(6), 354-362 (2000-07-13)
Chiral monophosphines, whose chirality is due to biaryl axial chirality, have been prepared from enantiomerically pure 2, 2'-dihydroxy-1,1'-binaphthyl and demonstrated to be highly efficient chiral ligands for transition-metal-catalyzed organic transformations, especially for reactions where chelating bisphosphine ligands cannot be used.

Articles

Chiral diene ligands enable asymmetric transformations, constructing enantioenriched compounds from achiral substrates efficiently.

Hydrogenation, Asymmetric Catalysis, Binap, SEGPHOS®, Aldol reaction, Alkenylation, Arylation, Mannich reaction, Fluorination, Michael addition, Hydrosilylation, Cycloaddition, Takasago

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service