Skip to Content
Merck
All Photos(2)

Documents

517011

Sigma-Aldrich

Strontium titanate

nanopowder, <100 nm particle size, 99% trace metals basis

Synonym(s):

Strontium metatitanate, Strontium titanium trioxide

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
SrTiO3
CAS Number:
Molecular Weight:
183.49
EC Number:
MDL number:
UNSPSC Code:
12352302
PubChem Substance ID:
NACRES:
NA.23

Quality Level

Assay

99% trace metals basis

form

nanopowder

dielectric constant

300

reaction suitability

reagent type: catalyst
core: titanium

particle size

<100 nm

mp

2060 °C (lit.)

density

4.81 g/mL at 25 °C (lit.)

SMILES string

[Sr++].[O-][Ti]([O-])=O

InChI

1S/3O.Sr.Ti/q;2*-1;+2;

InChI key

VEALVRVVWBQVSL-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

Strontium titanate (SrTiO3) is a crystalline oxide material known for its perovskite structure. It exhibits a high dielectric constant and is considered a promising material for various electronic applications. Strontium titanate has a density of 4.81 g/mL at 25 °C (lit.) and a melting point of about 2060°C. This compound is widely used in the production of capacitors, insulators, and piezoelectric devices due to its excellent dielectric properties. Additionally, strontium titanate is employed in the fabrication of thin films for advanced electronic devices, including transistors and sensors. Its unique optical properties also make it suitable for applications in photonics and optoelectronics.

Application

  • Photoinduced electronic and ionic effects in strontium titanate: Focuses on the interaction of strontium titanate with ultraviolet radiation, investigating photoionic processes and photochromic effects, which are crucial for developing optoelectronic devices (M Siebenhofer et al., 2021).
  • The emerging career of strontium titanates in photocatalytic applications: Reviews the role of strontium titanates in photocatalytic applications, particularly emphasizing their utility in environmental remediation processes (N Sharma, K Hernadi, 2022).
  • Recent advances on carrier and exciton self-trapping in strontium titanate: Discusses the self-trapping of carriers and excitons in strontium titanate, providing insights into its electronic properties and implications for semiconductor technologies (ML Crespillo et al., 2019).

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Customers Also Viewed

Slide 1 of 1

1 of 1

Ralf Moos et al.
Sensors (Basel, Switzerland), 11(4), 3439-3465 (2011-12-14)
Resistive oxygen sensors are an inexpensive alternative to the classical potentiometric zirconia oxygen sensor, especially for use in harsh environments and at temperatures of several hundred °C or even higher. This device-oriented paper gives a historical overview on the development
Troy K Townsend et al.
ACS nano, 6(8), 7420-7426 (2012-07-24)
SrTiO(3) (STO) is a large band gap (3.2 eV) semiconductor that catalyzes the overall water splitting reaction under UV light irradiation in the presence of a NiO cocatalyst. As we show here, the reactivity persists in nanoscale particles of the
L Avilés Félix et al.
Nanotechnology, 23(49), 495715-495715 (2012-11-17)
The transport properties of ultra-thin SrTiO(3) (STO) layers grown over YBa(2)Cu(3)O(7) electrodes were studied by conductive atomic force microscopy at the nano-scale. A very good control of the barrier thickness was achieved during the deposition process. A phenomenological approach was
Chemically driven nanoscopic magnetic phase separation at the SrTiO(3) (001)/La(1-x) Sr(x) CoO(3) interface.
Maria A Torija et al.
Advanced materials (Deerfield Beach, Fla.), 23(24), 2711-2715 (2011-04-21)
Qiang Xu et al.
Ultramicroscopy, 111(7), 912-919 (2011-06-15)
The knowledge of the valence electron distribution is essential for understanding the properties of materials. However this information is difficult to obtain from HREM images because it is easily obscured by the large scattering contribution of core electrons and by

Articles

Synthesis, Properties, and Applications of Perovskite-Phase Metal Oxide Nanostructures

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service