Skip to Content
Merck
All Photos(1)

Documents

Safety Information

D6171

SAFC

DMEM - high glucose

HEPES modification, with sodium bicarbonate, without ʟ-glutamine and sodium pyruvate, sterile liquid, suitable for cell culture

Synonym(s):

DME, Dulbecco′s Modified Eagle′s Medium - high glucose, DMEM

Sign Into View Organizational & Contract Pricing


About This Item

UNSPSC Code:
12352207
NACRES:
NA.75

product name

Dulbecco′s Modified Eagle′s Medium - high glucose, HEPES modification, With 4500 mg/L glucose, 25 mM HEPES, and sodium bicarbonate, without L-glutamine and sodium pyruvate, liquid, sterile-filtered, suitable for cell culture

sterility

sterile-filtered

form

liquid

technique(s)

cell culture | mammalian: suitable

impurities

endotoxin, tested

components

sodium pyruvate: no
HEPES: 25 mM
glucose: high
NaHCO3: yes
L-glutamine: no
phenol red: yes

shipped in

ambient

storage temp.

2-8°C

Looking for similar products? Visit Product Comparison Guide

Application

Dulbecco′s Modified Eagle′s Medium (DMEM) is a modification of Basal Medium Eagle (BME) that contains four-fold concentrations of the amino acids and vitamins. The original formulation contained 1000 mg/L of glucose and was used to culture embryonic mouse cells. Since then, it has been modified in several ways to support primary cultures of mouse and chicken cells, as well as a variety of normal and transformed cells. Each of these media offers a different combination of L-glutamine and sodium pyruvate. Additionally, the glucose levels have been raised to 4500 mg/L, contributing to the name "DMEM/High".

Reconstitution

Supplement with 0.584 g/L L-glutamine.

Storage Class Code

12 - Non Combustible Liquids

WGK

WGK 1

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Regulatory Listings

Regulatory Listings are mainly provided for chemical products. Only limited information can be provided here for non-chemical products. No entry means none of the components are listed. It is the user’s obligation to ensure the safe and legal use of the product.

JAN Code

D6171-24X500ML:
D6171PROC:
D6171-100ML:
D6171-VAR:
D6171-6X500ML:
D6171-1L:
D6171-500ML:
D6171-BULK:


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Shelbi Christgen et al.
Frontiers in cellular and infection microbiology, 10, 237-237 (2020-06-18)
Programmed cell death plays crucial roles in organismal development and host defense. Recent studies have highlighted mechanistic overlaps and extensive, multifaceted crosstalk between pyroptosis, apoptosis, and necroptosis, three programmed cell death pathways traditionally considered autonomous. The growing body of evidence
Ruut Kummala et al.
Biomacromolecules, 21(4), 1560-1567 (2020-03-10)
Biodegradable and renewable materials, such as cellulose nanomaterials, have been studied as a replacement material for traditional plastics in the biomedical field. Furthermore, in chronic wound care, modern wound dressings, hydrogels, and active synthetic extracellular matrices promoting tissue regeneration are
Benjamin E Maimon et al.
Scientific reports, 8(1), 14076-14076 (2018-09-21)
Optogenetic technologies have been the subject of great excitement within the scientific community for their ability to demystify complex neurophysiological pathways in the central (CNS) and peripheral nervous systems (PNS). The excitement surrounding optogenetics has also extended to the clinic
Ana Asenjo-Bueno et al.
Antioxidants (Basel, Switzerland), 10(8) (2021-08-28)
Aging impairs vascular function, but the mechanisms involved are unknown. The aim of this study was to analyze whether aging-related hyperphosphatemia is implied in this effect by elucidating the role of oxidative stress. C57BL6 mice that were aged 5 months
Min Zheng et al.
The Journal of biological chemistry, 295(41), 14040-14052 (2020-08-09)
Coronaviruses have caused several zoonotic infections in the past two decades, leading to significant morbidity and mortality globally. Balanced regulation of cell death and inflammatory immune responses is essential to promote protection against coronavirus infection; however, the underlying mechanisms that

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service