Regulatory Listings are mainly provided for chemical products. Only limited information can be provided here for non-chemical products. No entry means none of the components are listed. It is the user’s obligation to ensure the safe and legal use of the product.
Alpha-Glucosidases from Aspergillus niger, pig serum, ungerminated rice, buckwheat, and sugar beet seeds (but not from brewers' yeast or honeybee) were found to catalyze the hydration of D-glucal. Each reactive alpha-glucosidase, incubated with D-glucal in D2O, was shown to protonate
A total synthesis of the 12-membered ring natural macrolide, sporiolide B, was achieved from D-glucal in 17 steps with 4.8% overall yield. The required stereochemical configuration at C-3 and C-5 in sporiolide B was easily introduced by applying a Mitsunobu
D-Glucal, containing a highly reactive double bond, can replace glucose 1-phosphate as the glucosyl donor in phosphorylase-catalyzed glucosyl transfer to a suitable oligo- or polysaccharide acceptor: D-glucal + Pi + (glucose)Pi leads to n 2-deoxy-alpha-D-glucosyl(glucose)n in equilibrium 2-deoxy-alpha-D-glucose-1-P + (glucose)n.
Cellobiose phosphorylase from Cellulomonas uda (CuCPase) is shown to utilize D-glucal as slow alternative donor substrate for stereospecific glycosyl transfer to inorganic phosphate, giving 2-deoxy-α-D-glucose 1-phosphate as the product. When performed in D(2)O, enzymatic phosphorolysis of D-glucal proceeds with incorporation
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.