Passa al contenuto
Merck

Senataxin Mutation Reveals How R-Loops Promote Transcription by Blocking DNA Methylation at Gene Promoters.

Molecular cell (2018-02-06)
Christopher Grunseich, Isabel X Wang, Jason A Watts, Joshua T Burdick, Robert D Guber, Zhengwei Zhu, Alan Bruzel, Tyler Lanman, Kelian Chen, Alice B Schindler, Nancy Edwards, Abhik Ray-Chaudhury, Jianhua Yao, Tanya Lehky, Grzegorz Piszczek, Barbara Crain, Kenneth H Fischbeck, Vivian G Cheung
ABSTRACT

R-loops are three-stranded nucleic acid structures found abundantly and yet often viewed as by-products of transcription. Studying cells from patients with a motor neuron disease (amyotrophic lateral sclerosis 4 [ALS4]) caused by a mutation in senataxin, we uncovered how R-loops promote transcription. In ALS4 patients, the senataxin mutation depletes R-loops with a consequent effect on gene expression. With fewer R-loops in ALS4 cells, the expression of BAMBI, a negative regulator of transforming growth factor β (TGF-β), is reduced; that then leads to the activation of the TGF-β pathway. We uncovered that genome-wide R-loops influence promoter methylation of over 1,200 human genes. DNA methyl-transferase 1 favors binding to double-stranded DNA over R-loops. Thus, in forming R-loops, nascent RNA blocks DNA methylation and promotes further transcription. Hence, our results show that nucleic acid structures, in addition to sequences, influence the binding and activity of regulatory proteins.

MATERIALI
N° Catalogo
Marchio
Descrizione del prodotto

Sigma-Aldrich
Anticorpo anti-NeuN, clone A60, clone A60, Chemicon®, from mouse
Sigma-Aldrich
DNMT1 Active human, recombinant, expressed in baculovirus infected insect cells, ≥50% (SDS-PAGE)
Sigma-Aldrich
Anti-Dnmt1 Antibody, clone DNM-2C1, clone DNM-2C1, from rat
Sigma-Aldrich
MISSION® esiRNA, targeting human DNMT1
Sigma-Aldrich
MISSION® esiRNA, targeting human BAMBI