Passa al contenuto
Merck
  • VEGF-A and FGF-2 synergistically promote neoangiogenesis through enhancement of endogenous PDGF-B-PDGFRbeta signaling.

VEGF-A and FGF-2 synergistically promote neoangiogenesis through enhancement of endogenous PDGF-B-PDGFRbeta signaling.

Journal of cell science (2005-08-18)
Mitsunobu R Kano, Yasuyuki Morishita, Caname Iwata, Shigeru Iwasaka, Tetsuro Watabe, Yasuyoshi Ouchi, Kohei Miyazono, Keiji Miyazawa
ABSTRACT

Combined stimulation with VEGF-A, FGF-2, or PDGF-BB has emerged as a potent strategy for therapeutic angiogenesis, although the mechanisms underlying the synergism of these factors are not well understood. In the present study, we investigated the mechanism of synergism between VEGF-A and FGF-2 by using Matrigel plug assay in vivo and embryonic stem cell (ESC)-derived VEGF receptor 2 (VEGFR2)-positive cells in vitro. Experiments in vitro revealed that, in addition to having direct mitogenic effects, these molecules enhance intercellular PDGF-B signaling in a cell-type specific manner: VEGF-A enhances endothelial PDGF-B expression, whereas FGF-2 enhances mural PDGF receptor beta (PDGFRbeta) expression. Co-stimulation with VEGF-A and FGF-2 caused significant mural cell recruitment in vitro and formation of functional neovasculature in vivo, compared with single-agent stimulation. These effects were abrogated not only by anti-PDGFRbeta neutralizing antibody, but also by exogenous PDGF-BB, which could overwhelm the endogenous PDGF-BB distribution. These findings indicated the importance of preservation of the periendothelial PDGF-BB gradient. Thus, we demonstrated that the directional enhancement of endogenous PDGF-B-PDGFRbeta signaling is indispensable for the synergistic effect of VEGF-A and FGF-2 on neoangiogenesis in adults. The findings provide insights into the mechanisms underlying the effects of co-stimulation by growth factors, which could lead to rational design of therapeutic angiogenic strategies.

MATERIALI
N° Catalogo
Marchio
Descrizione del prodotto

Sigma-Aldrich
Anticorpo monoclonale di topo anti-actina, α-muscolo liscio - Cy3, clone 1A4, purified from hybridoma cell culture
Sigma-Aldrich
Anticorpo anti-collagene, tipo IV, Chemicon®, from rabbit