Saltar al contenido
Merck

202444

Sigma-Aldrich

Poli(etilenglicol)

average MN 3,350, hydroxyl, powder

Sinónimos:

PEG

Iniciar sesiónpara Ver la Fijación de precios por contrato y de la organización


About This Item

Fórmula lineal:
H(OCH2CH2)nOH
Número de CAS:
MDL number:
UNSPSC Code:
12352104
PubChem Substance ID:
NACRES:
NA.23

product name

Poli(etilenglicol), average Mn 3,350, powder

form

powder

Quality Level

mol wt

average Mn 3,350

pH

4.5-7.5

viscosity

90 cSt(210 °F) (99 °C)(lit.)

mp

54-58 °C (lit.)

density

1.204 g/mL at 25 °C

Ω-end

hydroxyl

α-end

hydroxyl

SMILES string

C(CO)O

InChI

1S/C2H6O2/c3-1-2-4/h3-4H,1-2H2

InChI key

LYCAIKOWRPUZTN-UHFFFAOYSA-N

¿Está buscando productos similares? Visita Guía de comparación de productos

General description

Poly(ethylene glycol) (PEG) is a biocompatible inert synthetic polymer with repeating units of ether oxygen (-CH2-CH2-O-). It can be synthesized via anionic polymerization of ethylene oxide. It is extensively used in biological and medical applications due to its non-immunogenicity and high water solubility.

Application

PEG can be used to functionalize magnetite nanoparticles. The coating of the magnetic core with PEG provides good stabilization while maintaining the magnetic properties of the nanoparticles.

It can be used to modify the surface of photocatalytic TiO2 nanopowder for its application in self-cleaning paints. PEG-coated TiO2 nanopowder can be prepared under mild conditions and show excellent colloidal stability.

It can be used as a cross-linker to prepare poly(N-isopropylacrylamide) based thermosensitive injectable hydrogels. The addition of PEG improves the chemical and mechanical properties of hydrogel and prevents it from dissolving in the swelling medium. Owing to their biocompatibility and biodegradability, these hydrogels are widely used for biomedical applications.

Features and Benefits

  • High structural flexibility
  • Biocompatibility
  • High hydration capacity
  • Devoid of any steric hindrance

Other Notes

Molecular weight: Mn 3,015-3,685

Storage Class

11 - Combustible Solids

wgk_germany

WGK 1

flash_point_f

Not applicable

flash_point_c

Not applicable

ppe

Eyeshields, Gloves, type N95 (US)


Certificados de análisis (COA)

Busque Certificados de análisis (COA) introduciendo el número de lote del producto. Los números de lote se encuentran en la etiqueta del producto después de las palabras «Lot» o «Batch»

¿Ya tiene este producto?

Encuentre la documentación para los productos que ha comprado recientemente en la Biblioteca de documentos.

Visite la Librería de documentos

Los clientes también vieron

Grant A Robinson et al.
Journal of neuroscience research, 94(7), 636-644 (2016-03-21)
Functional recovery following a peripheral nerve injury is made easier when regenerating axons correctly reinnervate their original targets. Polyethylene glycol (PEG) has recently been used in attempts to fuse severed peripheral axons during suture-based repair, but an analysis of target
Erinna F Lee et al.
Autophagy, 15(5), 785-795 (2019-01-11)
BECN1/Beclin 1 is a critical protein in the initiation of autophagosome formation. Recent studies have shown that phosphorylation of BECN1 by STK4/MST1 at threonine 108 (T108) within its BH3 domain blocks macroautophagy/autophagy by increasing BECN1 affinity for its negative regulators
Yixu Wang et al.
mSphere, 4(3) (2019-05-31)
Sporisorium scitamineum is the fungal pathogen causing severe sugarcane smut disease that leads to massive economic losses globally. S. scitamineum invades host cane by dikaryotic hyphae, formed after sexual mating of two haploid sporidia of opposite mating type. Therefore, mating/filamentation
I L Konorova et al.
Patologicheskaia fiziologiia i eksperimental'naia terapiia, (4)(4), 7-9 (1991-07-01)
The search for antiaggregatory compounds is undertaken, as a rule, under in vitro conditions which do not reflect the dynamics of the real process. The present work deals with study of the peculiarities of the development of the collagen induced
P I Polimeni et al.
Journal of cardiovascular pharmacology, 14(3), 374-380 (1989-09-01)
The acute hemodynamic effects of an intravenously (i.v.) injected poly(ethylene oxide), Polyox WSR N-60K (dose 50 mg/kg), were studied in the open-chest rat anesthetized with sodium pentobarbital. The injectate is one of four drag-reducing polymers known to augment in vitro

Artículos

Progress in biotechnology fields such as tissue engineering and drug delivery is accompanied by an increasing demand for diverse functional biomaterials. One class of biomaterials that has been the subject of intense research interest is hydrogels, because they closely mimic the natural environment of cells, both chemically and physically and therefore can be used as support to grow cells. This article specifically discusses poly(ethylene glycol) (PEG) hydrogels, which are good for biological applications because they do not generally elicit an immune response. PEGs offer a readily available, easy to modify polymer for widespread use in hydrogel fabrication, including 2D and 3D scaffold for tissue culture. The degradable linkages also enable a variety of applications for release of therapeutic agents.

Designing biomaterial scaffolds mimicking complex living tissue structures is crucial for tissue engineering and regenerative medicine advancements.

Designing biomaterial scaffolds mimicking complex living tissue structures is crucial for tissue engineering and regenerative medicine advancements.

Designing biomaterial scaffolds mimicking complex living tissue structures is crucial for tissue engineering and regenerative medicine advancements.

Ver todo

Contenido relacionado

Polyethylene glycol (PEG), also sometimes referred to as polyethylene oxide (PEO), is a condensation polymer of ethylene oxide and water that has several chemical properties that make it useful for biological, chemical and pharmaceutical applications.

Polyethylene glycol (PEG), also sometimes referred to as polyethylene oxide (PEO), is a condensation polymer of ethylene oxide and water that has several chemical properties that make it useful for biological, chemical and pharmaceutical applications.

Polyethylene glycol (PEG), also sometimes referred to as polyethylene oxide (PEO), is a condensation polymer of ethylene oxide and water that has several chemical properties that make it useful for biological, chemical and pharmaceutical applications.

Polyethylene glycol (PEG), also sometimes referred to as polyethylene oxide (PEO), is a condensation polymer of ethylene oxide and water that has several chemical properties that make it useful for biological, chemical and pharmaceutical applications.

Nuestro equipo de científicos tiene experiencia en todas las áreas de investigación: Ciencias de la vida, Ciencia de los materiales, Síntesis química, Cromatografía, Analítica y muchas otras.

Póngase en contacto con el Servicio técnico