Skip to Content
Merck
All Photos(1)

Key Documents

40941

Sigma-Aldrich

Methylphosphonic acid

99.0-101.0% (T)

Synonym(s):

MPA

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
CH3P(O)(OH)2
CAS Number:
Molecular Weight:
96.02
Beilstein:
1739372
EC Number:
MDL number:
UNSPSC Code:
12352204
PubChem Substance ID:
NACRES:
NA.25

Quality Level

Assay

99.0-101.0% (T)

loss

≤2.0% loss on drying

pH

0.9-1.4

mp

103-109 °C
105-107 °C (lit.)

solubility

H2O: 2.88 g in 30 mL, clear, colorless

cation traces

Al: ≤5 mg/kg
Ba: ≤5 mg/kg
Bi: ≤5 mg/kg
Ca: ≤10 mg/kg
Cd: ≤5 mg/kg
Co: ≤5 mg/kg
Cr: ≤5 mg/kg
Cu: ≤5 mg/kg
Fe: ≤5 mg/kg
K: ≤50 mg/kg
Li: ≤5 mg/kg
Mg: ≤5 mg/kg
Mn: ≤5 mg/kg
Mo: ≤5 mg/kg
Na: ≤50 mg/kg
Ni: ≤5 mg/kg
Pb: ≤5 mg/kg
Sr: ≤5 mg/kg
Zn: ≤5 mg/kg

UV absorption

λ: 260 nm Amax: ≤0.05
λ: 280 nm Amax: ≤0.04

SMILES string

CP(O)(O)=O

InChI

1S/CH5O3P/c1-5(2,3)4/h1H3,(H2,2,3,4)

InChI key

YACKEPLHDIMKIO-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Application

Highly pure methylphosphonic acid for phosphoproteome analysis

Pictograms

CorrosionExclamation mark

Signal Word

Danger

Hazard Statements

Hazard Classifications

Acute Tox. 4 Oral - Eye Dam. 1 - Skin Corr. 1B

Storage Class Code

8A - Combustible corrosive hazardous materials

WGK

WGK 2

Flash Point(F)

>392.0 °F - Pensky-Martens closed cup

Flash Point(C)

> 200 °C - Pensky-Martens closed cup


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

C E Pritchard et al.
Nucleic acids research, 22(13), 2592-2600 (1994-07-11)
The HIV-1 regulatory proteins tat and rev are both RNA binding proteins which recognize sequences in duplex RNA which are close to structural distortions. Here we identify phosphate contacts which are critical for each binding reaction by use of a
Mostafa Zarei et al.
Journal of proteome research, 11(8), 4269-4276 (2012-07-10)
In large-scale phosphoproteomics studies, fractionation by strong cation exchange (SCX) or electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) is commonly used to reduce sample complexity, fractionate phosphopeptides from their unmodified counterparts, and increase the dynamic range for phosphopeptide identification. However, these procedures
Mostafa Zarei et al.
Journal of proteome research, 10(8), 3474-3483 (2011-06-21)
Reversible phosphorylations play a critical role in most biological pathways. Hence, in signaling studies great effort has been put into identification of a maximum number of phosphosites per experiment. Mass spectrometry (MS)-based phosphoproteomics approaches have been proven to be an
Stefan Loroch et al.
Analytical chemistry, 87(3), 1596-1604 (2014-11-19)
In the past decade, several strategies for comprehensive phosphoproteome analysis have been introduced. Most of them combine different phosphopeptide enrichment techniques and require starting material in the milligram range, as a consequence of their insufficient sensitivity. This limitation impairs the
Constantin Lohrer et al.
Talanta, 211, 120724-120724 (2020-02-20)
Methylphosphonic acid (MPn) is suspected to play an important role in aquatic systems like rivers or the open ocean. To gain more insights into the importance of MPn, e.g., for the aquatic phosphorus cycle, an analytical method for its quantitative

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service