跳转至内容
Merck
  • Chemokine Signaling Controls Integrity of Radial Glial Scaffold in Developing Spinal Cord and Consequential Proper Position of Boundary Cap Cells.

Chemokine Signaling Controls Integrity of Radial Glial Scaffold in Developing Spinal Cord and Consequential Proper Position of Boundary Cap Cells.

The Journal of neuroscience : the official journal of the Society for Neuroscience (2015-06-19)
Yan Zhu, Tomoko Matsumoto, Takashi Nagasawa, Fabienne Mackay, Fujio Murakami
摘要

Radial glial cells are the neural progenitors of the developing CNS and have long radial processes that guide radially migrating neurons. The integrity of the radial glial scaffold, in particular proper adhesion between the endfeet of radial processes and the pial basement membrane (BM), is important for the cellular organization of the CNS, as indicated by evidence emerging from the developing cortex. However, the mechanisms underlying the maintenance of radial glial scaffold integrity during development, when the neuroepithelium rapidly expands, are still poorly understood. Here, we addressed this issue in the developing mouse spinal cord. We show that CXCR4, a receptor of chemokine CXCL12, is expressed in spinal cord radial glia. Conditional knock-out of Cxcr4 in radial glia caused disrupted radial glial scaffold with gaps at the pial endfeet layer and consequentially led to an invasion of boundary cap (BC) cells into the spinal cord. Because BC cells are PNS cells normally positioned at the incoming and outgoing axonal roots, their invasion into the spinal cord suggests a compromised CNS/PNS boundary in the absence of CXCL12/CXCR4 signaling. Both disrupted radial glial scaffold and invasion of BC cells into the CNS were also present in mice deficient in CXCR7, a second receptor of CXCL12. We further show that CXCL12 signaling promotes the radial glia adhesion to BM components and activates integrin β1 avidity. Our study unravels a novel molecular mechanism that deploys CXCL12/CXCR4/CXCR7 for the maintenance of radial glial scaffold integrity, which in turn safeguards the CNS/PNS boundary during spinal cord development.

材料
货号
品牌
产品描述

Sigma-Aldrich
泰莫西芬, ≥99%
Sigma-Aldrich
过氧化氢 溶液, 30 % (w/w) in H2O, contains stabilizer
Sigma-Aldrich
DAPI, for nucleic acid staining
Sigma-Aldrich
抗层粘连蛋白 兔抗, 0.5 mg/mL, affinity isolated antibody, buffered aqueous solution
Sigma-Aldrich
L -赖氨酸, ≥98% (TLC)
Sigma-Aldrich
荧光素, for fluorescence, free acid
Sigma-Aldrich
2,4-二硝基酚, moistened with water, ≥98.0%
Sigma-Aldrich
曲古抑菌素A, ≥98% (HPLC), from Streptomyces sp.
Sigma-Aldrich
1,4-二叠氮双环[2.2.2]辛烷溶液®
Sigma-Aldrich
抗磷酸组蛋白H3(Ser10)抗体,有丝分裂标记, Upstate®, from rabbit
Sigma-Aldrich
L -赖氨酸, crystallized, ≥98.0% (NT)
Sigma-Aldrich
1,4-二叠氮双环[2.2.2]辛烷, ReagentPlus®, ≥99%
Sigma-Aldrich
FGF-2 human, recombinant, expressed in E. coli, ≥95% (SDS-PAGE), ≥95% (HPLC)
Sigma-Aldrich
过氧化氢 溶液, SAJ first grade, ≥30.0%
Sigma-Aldrich
过氧化氢 溶液, 34.5-36.5%
Sigma-Aldrich
2-苯基吲哚, technical grade, 95%
Sigma-Aldrich
FGF-2 human, recombinant, expressed in insect cells, ≥85% (SDS-PAGE)
Sigma-Aldrich
过氧化氢 溶液, contains potassium stannate as inhibitor, 30-32 wt. % in water, semiconductor grade, 99.999% trace metals basis
Sigma-Aldrich
2,4-二硝基酚, SAJ special grade, ≥98.0%