跳转至内容
Merck
  • Chronic hypoxia promotes pulmonary artery endothelial cell proliferation through H2O2-induced 5-lipoxygenase.

Chronic hypoxia promotes pulmonary artery endothelial cell proliferation through H2O2-induced 5-lipoxygenase.

PloS one (2014-06-07)
Kristi M Porter, Bum-Yong Kang, Sherry E Adesina, Tamara C Murphy, C Michael Hart, Roy L Sutliff
摘要

Pulmonary Hypertension (PH) is a progressive disorder characterized by endothelial dysfunction and proliferation. Hypoxia induces PH by increasing vascular remodeling. A potential mediator in hypoxia-induced PH development is arachidonate 5-Lipoxygenase (ALOX5). While ALOX5 metabolites have been shown to promote pulmonary vasoconstriction and endothelial cell proliferation, the contribution of ALOX5 to hypoxia-induced proliferation remains unknown. We hypothesize that hypoxia exposure stimulates HPAEC proliferation by increasing ALOX5 expression and activity. To test this, human pulmonary artery endothelial cells (HPAEC) were cultured under normoxic (21% O2) or hypoxic (1% O2) conditions for 24-, 48-, or 72 hours. In a subset of cells, the ALOX5 inhibitor, zileuton, or the 5-lipoxygenase activating protein inhibitor, MK-886, was administered during hypoxia exposure. ALOX5 expression was measured by qRT-PCR and western blot and HPAEC proliferation was assessed. Our results demonstrate that 24 and 48 hours of hypoxia exposure have no effect on HPAEC proliferation or ALOX5 expression. Seventy two hours of hypoxia significantly increases HPAEC ALOX5 expression, hydrogen peroxide (H2O2) release, and HPAEC proliferation. We also demonstrate that targeted ALOX5 gene silencing or inhibition of the ALOX5 pathway by pharmacological blockade attenuates hypoxia-induced HPAEC proliferation. Furthermore, our findings indicate that hypoxia-induced increases in cell proliferation and ALOX5 expression are dependent on H2O2 production, as administration of the antioxidant PEG-catalase blocks these effects and addition of H2O2 to HPAEC promotes proliferation. Overall, these studies indicate that hypoxia exposure induces HPAEC proliferation by activating the ALOX5 pathway via the generation of H2O2.

材料
货号
品牌
产品描述

Sigma-Aldrich
氯化钠, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
氯化钙 溶液, BioUltra, for molecular biology, ~1 M in H2O
Sigma-Aldrich
氯化钠 溶液, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
氯化钠 溶液, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
氯化钠, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
氯化钙, anhydrous, BioReagent, suitable for insect cell culture, suitable for plant cell culture, ≥96.0%
SAFC
氯化钠 溶液, 5 M
Sigma-Aldrich
氯化钠, JIS special grade, ≥99.5%
Sigma-Aldrich
氯化钠 溶液, BioUltra, for molecular biology, ~5 M in H2O
Sigma-Aldrich
氯化钠, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
氯化钠, 99.999% trace metals basis
Sigma-Aldrich
氯化钠, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
氯化钙, anhydrous, powder, 99.99% trace metals basis
Sigma-Aldrich
氯化钠, SAJ first grade, ≥99.0%
Sigma-Aldrich
氯化钙, AnhydroBeads, −10 mesh, ≥99.9% trace metals basis
Sigma-Aldrich
氯化钠, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
Sigma-Aldrich
氯化钠 溶液, 5 M
Sigma-Aldrich
氯化钠, BioPerformance Certified, ≥99% (titration), suitable for insect cell culture, suitable for plant cell culture
Supelco
氯化钠, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
氯化钠, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
氯化钠-35Cl, 99 atom % 35Cl
Sigma-Aldrich
氯化钙
Sigma-Aldrich
氯化钠 溶液, 1 M
Sigma-Aldrich
氯化钠 溶液, 0.85%
Supelco
氯化钠, reference material for titrimetry, certified by BAM, >99.5%
Sigma-Aldrich
氯化钠, random crystals, optical grade, 99.9% trace metals basis
Sigma-Aldrich
氯化钙, AnhydroBeads, −10 mesh, ≥99.99% trace metals basis
Supelco
用于 ISE 的钙离子溶液, 0.1 M Ca, analytical standard (for ion-selective electrodes)
Sigma-Aldrich
氯化钠 溶液, 0.1 M
Sigma-Aldrich
氯化钠, tested according to Ph. Eur.