跳转至内容
Merck
  • Role of MYC-regulated long noncoding RNAs in cell cycle regulation and tumorigenesis.

Role of MYC-regulated long noncoding RNAs in cell cycle regulation and tumorigenesis.

Journal of the National Cancer Institute (2015-02-11)
Taewan Kim, Young-Jun Jeon, Ri Cui, Ji-Hoon Lee, Yong Peng, Sung-Hak Kim, Esmerina Tili, Hansjuerg Alder, Carlo M Croce
摘要

The functions of long noncoding RNAs (lncRNAs) have been identified in several cancers, but the roles of lncRNAs in colorectal cancer (CRC) are less well understood. The transcription factor MYC is known to regulate lncRNAs and has been implicated in cancer cell proliferation and tumorigenesis. CRC cells and tissues were profiled to identify lncRNAs differentially expressed in CRC, from which we further selected MYC-regulated lncRNAs. We used luciferase promoter assay, ChIP, RNA pull-down assay, deletion mapping assay, LC-MS/MS and RNA immunoprecipitation to determine the mechanisms of MYC regulation of lncRNAs. Moreover, soft agar assay and in vivo xenograft experiments (four athymic nude mice per group) provided evidence of MYC-regulated lncRNAs in cancer cell transformation and tumorigenesis. The Kaplan-Meier method was used for survival analyses. All statistical tests were two-sided. We identified lncRNAs differentially expressed in CRC (P < .05, greater than two-fold) and verified four lncRNAs upregulated and two downregulated in CRC cells and tissues. We further identified MYC-regulated lncRNAs, named MYCLos. The MYC-regulated MYCLos may function in cell proliferation and cell cycle by regulating MYC target genes such as CDKN1A (p21) and CDKN2B (p15), suggesting new regulatory mechanisms of MYC-repressed target genes through lncRNAs. RNA binding proteins including HuR and hnRNPK are involved in the function of MYCLos by interacting with MYCLo-1 and MYCLo-2, respectively. Knockdown experiments also showed that MYCLo-2, differentially expressed not only in CRC but also in prostate cancer, has a role in cancer transformation and tumorigenesis. Our results provide novel regulatory mechanisms in MYC function through lncRNAs and new potential lncRNA targets of CRC.

材料
货号
品牌
产品描述

Sigma-Aldrich
Anti-c-Myc抗体,小鼠单克隆 小鼠抗, clone 9E10, purified from hybridoma cell culture