跳转至内容
Merck
  • The effects of exogenous surfactant treatment in a murine model of two-hit lung injury.

The effects of exogenous surfactant treatment in a murine model of two-hit lung injury.

Anesthesia and analgesia (2014-12-17)
Vanessa Zambelli, Giacomo Bellani, Maria Amigoni, Alice Grassi, Margherita Scanziani, Francesca Farina, Roberto Latini, Antonio Pesenti
摘要

Because pulmonary endogenous surfactant is altered during acute respiratory distress syndrome, surfactant replacement may improve clinical outcomes. However, trials of surfactant use have had mixed results. We designed this animal model of unilateral (right) lung injury to explore the effect of exogenous surfactant administered to the injured lung on inflammation in the injured and noninjured lung. Mice underwent hydrochloric acid instillation (1.5 mL/kg) into the right bronchus and prolonged (7 hours) mechanical ventilation (25 mL/kg). After 3 hours, mice were treated with 1 mL/kg exogenous surfactant (Curosurf®) (surf group) or sterile saline (NaCl 0.9%) (vehicle group) in the injured (right) lung or did not receive any treatment (hydrochloric acid, ventilator-induced lung injury). Gas exchange, lung compliance, and bronchoalveolar inflammation (cells, albumin, and cytokines) were evaluated. After a significant analysis of variance (ANOVA) test, Tukey post hoc test was used for statistical analysis. At least 8 to 10 mice in each group were analyzed for each evaluated variable. Surfactant treatment significantly increased both the arterial oxygen tension to fraction of inspired oxygen ratio and respiratory system static compliance (P = 0.027 and P = 0.007, respectively, for surf group versus vehicle). Surfactant therapy increased indices of inflammation in the acid-injured lung compared with vehicle: inflammatory cells (685 [602-773] and 216 [125-305] × 1000/mL, respectively; P < 0.001) and albumin in bronchoalveolar lavage (BAL) (1442 ± 588 and 743 ± 647 μg/mL, respectively; P = 0.027). These differences were not found (P = 0.96 and P = 0.54) in the contralateral (uninjured) lung (inflammatory cells 131 [78-195] and 119 [87-149] × 1000/mL and albumin 135 ± 100 and 173 ± 115 μg/mL). Exogenous surfactant administration to an acid-injured right lung improved gas exchange and whole respiratory system compliance. However, markers of inflammation increased in the right (injured) lung, although this result was not found in the left (uninjured) lung. These data suggest that the mechanism by which surfactant improves lung function may involve both uninjured and injured alveoli.

材料
货号
品牌
产品描述

Sigma-Aldrich
盐酸, ACS reagent, 37%
Sigma-Aldrich
盐酸, ACS reagent, 37%
Sigma-Aldrich
氯化氢 溶液, 4.0 M in dioxane
Sigma-Aldrich
盐酸 溶液, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
盐酸, 37 wt. % in H2O, 99.999% trace metals basis
Sigma-Aldrich
盐酸, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., fuming, ≥37%, APHA: ≤10
Sigma-Aldrich
盐酸, meets analytical specification of Ph. Eur., BP, NF, fuming, 36.5-38%
Sigma-Aldrich
盐酸, 36.5-38.0%, BioReagent, for molecular biology
Sigma-Aldrich
氯化氢 溶液, 2.0 M in diethyl ether
Supelco
盐酸 溶液, volumetric, 0.1 M HCl (0.1N), endotoxin free
Sigma-Aldrich
盐酸, SAJ first grade, 35.0-37.0%
Sigma-Aldrich
盐酸, JIS special grade, 35.0-37.0%
Sigma-Aldrich
氯化氢 溶液, 1.0 M in diethyl ether
Sigma-Aldrich
氯化氢, ReagentPlus®, ≥99%
Sigma-Aldrich
盐酸, puriss., 24.5-26.0%
Sigma-Aldrich
盐酸 溶液, 1 M
Sigma-Aldrich
盐酸 溶液, ~6 M in H2O, for amino acid analysis
Sigma-Aldrich
盐酸 溶液, 6 M
Sigma-Aldrich
盐酸 溶液, 12 M
Sigma-Aldrich
氯化氢 溶液, 3 M in cyclopentyl methyl ether (CPME)
Sigma-Aldrich
盐酸 溶液, 32 wt. % in H2O, FCC
Sigma-Aldrich
盐酸 溶液, 2 M
Sigma-Aldrich
氯化氢 溶液, 1.0 M in acetic acid
Sigma-Aldrich
盐酸 溶液, 0.5 M
Supelco
氯化氢 - 1-丁醇 溶液, ~3 M in 1-butanol, for GC derivatization, LiChropur
Sigma-Aldrich
盐酸 溶液, 0.2 M
Supelco
氯化氢 – 乙醇 溶液, ~1.25 M HCl, for GC derivatization, LiChropur
Sigma-Aldrich
盐酸 溶液, 0.01 M
Sigma-Aldrich
盐酸 溶液, 0.05 M
Sigma-Aldrich
氯化氢 – 乙醇 溶液, 0.1 M in ethanol