跳转至内容
Merck
  • Constitutive PGC-1α overexpression in skeletal muscle does not protect from age-dependent decline in neurogenesis.

Constitutive PGC-1α overexpression in skeletal muscle does not protect from age-dependent decline in neurogenesis.

Scientific reports (2019-08-25)
Lars Karlsson, María Nazareth González-Alvarado, Reza Motalleb, Klas Blomgren, Mats Börjesson, Hans Georg Kuhn
摘要

Aerobic exercise prevents age-dependent decline in cognition and hippocampal neurogenesis. The transcription factor peroxisome proliferator-activated receptor gamma co-activator 1-alpha (PGC-1α) mediates many of the exercise-induced benefits in skeletal muscle, including the release of factors into the circulation with neurotrophic effects. We use a transgenic mouse model with muscle-specific overexpression of PGC-1α to study the contribution of chronic muscle activation on exercise-induced effects on hippocampal neurogenesis in aging. Young and old transgenic and wild type animals of both sexes displayed a robust age-related reduction in newborn BrdU+-cells, immature neurons (DCX+-cells) and new mature BrdU+/NeuN+-neurons in the dentate gyrus. No differences were detected between genotypes or sexes. Analysis of serum proteins showed a tendency towards increased levels of myokines and reduced levels of pro-inflammatory cytokines for transgenic animals, but only musclin was found to be significantly up-regulated in transgenic animals. We conclude that constitutive muscular overexpression of PGC-1α, despite potent systemic changes, is insufficient for mimicking exercise-induced effects on hippocampal neurogenesis in aging. Continued studies are required to investigate the complex molecular mechanisms by which circulating signals could mediate exercise-induced effects on the central nervous system in disease and aging, with the aim of discovering new therapeutic possibilities for patients.

材料
货号
品牌
产品描述

Sigma-Aldrich
抗NeuN抗体,克隆A60, clone A60, Chemicon®, from mouse
Millipore
MILLIPLEX® Mouse Myokine Magnetic Bead Panel, Inflammation/Immunology Bead-Based Multiplex Assays using the Luminex technology enable the simultaneous analysis of multiple myokine and cytokine biomarkers in mouse serum and plasma samples.