跳转至内容
Merck

SML2223

Sigma-Aldrich

WAY-267464 dihydrochloride

≥98% (HPLC)

别名:

4-(3,5-Dihydroxy-benzyl)-piperazine-1-carboxylic acid 2-methyl-4-(3-methyl-4,10-dihydro-3H-2,3,4,9-tetraaza-benzo[f]azulene-9-carbonyl)-benzylamide dihydrochloride, N-[[4-[(4,10-Dihydro-1-methylpyrazolo[3,4-b][1,5]benzodiazepin-5(1H)-yl)carbonyl]-2-methylphenyl]methyl]-4-[(3,5-dihydroxyphenyl)methyl]-1-piperazinecarboxamide dihydrochloride, WAY 267,464 dihydrochloride, WAY 267464 dihydrochloride, WAY-267,464 dihydrochloride, WAY267464 dihydrochloride

登录查看公司和协议定价


About This Item

经验公式(希尔记法):
C32H35N7O4 · 2HCl
分子量:
654.59
MDL编号:
UNSPSC代码:
12352200
NACRES:
NA.77

方案

≥98% (HPLC)

表单

powder

储存条件

desiccated

颜色

white to beige

溶解性

H2O: 2 mg/mL, clear

储存温度

2-8°C

SMILES字符串

O=C(NCC1=CC=C(C=C1C)C(N2CC3=C(NC4=CC=CC=C24)N(N=C3)C)=O)N5CCN(CC5)CC6=CC(O)=CC(O)=C6

InChI

1S/C32H35N7O4.2ClH/c1-21-13-23(31(42)39-20-25-18-34-36(2)30(25)35-28-5-3-4-6-29(28)39)7-8-24(21)17-33-32(43)38-11-9-37(10-12-38)19-22-14-26(40)16-27(41)15-22;;/h3-8,13-16,18,35,40-41H,9-12,17,19-20H2,1-2H3,(H,33,43);2*1H

InChI key

OTFWXMFLPMUDFP-UHFFFAOYSA-N

生化/生理作用

Non-peptide oxytocin receptor (OTR) agonist and vasopressin V1a receptor (V1aR) antagonist.
WAY-267464 is a non-peptide drug with a novel mechanism of action (MOA) to treat psychosis and schizophrenia.
WAY-267464 is a non-peptide oxytocin receptor (OTR) agonist (EC50 = 61-881 nM; Ki = 58-978 nM) that, unlike oxytocin (OT), displays antagonist instead of agonist activity toward vasopressin V1a receptor/V1aR (IC50 = 613 nM; Ki = 27-113 nM). WAY-267464 exhibits OT-like anxiolytic effects in assays measuring both behavioral (33% increase in punished crossing by 10 mg/mL ip or 10 μg/mouse icv in four-plate tests; 75% increased open quadrants stay by 3 μg/mouse icv in elevated zero maze) and autonomic (47% higher stress-induced hyperthermia by 10 μg/mouse icv) parameters of the anxiety response. Similar to the antipsychotic-like effects reported for OT, WAY-267464 also reverses disruption in prepulse inhibition of the acoustic startle reflex induced by either MK-801 or amphetamine. Unlike OT, WAY-267464 does not affect immobility in mouse tail suspension test.

储存分类代码

11 - Combustible Solids

WGK

WGK 3

闪点(°F)

Not applicable

闪点(°C)

Not applicable


历史批次信息供参考:

分析证书(COA)

Lot/Batch Number

It looks like we've run into a problem, but you can still download Certificates of Analysis from our 文件 section.

如需帮助,请联系 客户支持

已有该产品?

在文件库中查找您最近购买产品的文档。

访问文档库

Robert H Ring et al.
Neuropharmacology, 58(1), 69-77 (2009-07-21)
The widely reported effects of oxytocin (OT) on CNS function has generated considerable interest in the therapeutic potential for targeting this system for a variety of human psychiatric diseases, including anxiety disorders, autism, schizophrenia, and depression. The utility of synthetic
C Hicks et al.
Journal of neuroendocrinology, 24(7), 1012-1029 (2012-03-17)
Previous research suggests that the nonpeptide oxytocin receptor (OTR) agonist WAY 267,464 may only partly mimic the effects of oxytocin in rodents. The present study further explored these differences and related them to OTR and vasopressin 1a receptor (V(1a) R)
Nisrine Lahoud et al.
Psychoneuroendocrinology, 38(10), 2184-2195 (2013-09-17)
The oxytocinergic system promotes social behavior and reduces anxiety. The significant roles and functional interactions of the medial prefrontal cortex and the amygdala in the regulation of fear provide a unique experimental setting to examine the effects of oxytocin on
William T Jorgensen et al.
European journal of medicinal chemistry, 108, 730-740 (2016-01-08)
A previously identified, non-peptidic oxytocin (OT) receptor agonist WAY-267,464 (1) and nine novel derivatives (3, 4a-7a, 4b-7b) were synthesised and evaluated in vitro with the aim of systematically exploring hydrogen bonding interactions and ligand flexibility. All analogues were subjected to competition
William T Jorgensen et al.
European journal of medicinal chemistry, 143, 1644-1656 (2017-11-12)
WAY-267,464 (1) and twelve conformationally rigid analogues (3a-f-4a-f) were synthesised, characterised and evaluated in cellular assays with the aim of systematically exploring interactions with the oxytocin receptor (OTR). Each analogue was evaluated in radioligand binding displacement assays at both human

我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.

联系客户支持