生物源
synthetic
化驗
≥95% (HPLC)
形狀
powder
光學活性
[α]/D 18.5±2.0°, c = 1 in H2O
儲存溫度
2-8°C
SMILES 字串
OC[C@@H](O)[C@H](O)[C@@H](O)C(O)=O.N
InChI
1S/C5H10O6.H3N/c6-1-2(7)3(8)4(9)5(10)11;/h2-4,6-9H,1H2,(H,10,11);1H3/t2-,3+,4-;/m1./s1
InChI 密鑰
VUOKJALMVMFERM-HAYYNCRMSA-N
生化/生理作用
Metabolite for the xylose utilization pathway.
儲存類別代碼
13 - Non Combustible Solids
水污染物質分類(WGK)
WGK 3
閃點(°F)
Not applicable
閃點(°C)
Not applicable
Bioresource technology, 115, 244-248 (2011-09-16)
An engineered Escherichia coli was constructed to produce D-xylonic acid, one of the top 30 high-value chemicals identified by US Department of Energy. The native pathway for D-xylose catabolism in E. coli W3110 was blocked by disrupting xylose isomerase (XI)
Applied microbiology and biotechnology, 96(1), 1-8 (2012-08-10)
D-Xylonic acid is a versatile platform chemical with reported applications as complexing agent or chelator, in dispersal of concrete, and as a precursor for compounds such as co-polyamides, polyesters, hydrogels and 1,2,4-butanetriol. With increasing glucose prices, D-xylonic acid may provide
Bioresource technology, 133, 555-562 (2013-03-05)
D-xylonic acid is one of the top 30 most desirable chemicals to be derived from biomass sugars identified by the US Department of Energy, being applicable as a non-food substitute for D-gluconic acid and as a platform chemical. We engineered
Note on D-xylonate utilization by ascomycetous and basidiomycetous yeasts.
Systematic and Applied Microbiology, 13, 192-193 (1990)
Metabolic engineering, 14(4), 427-436 (2012-06-20)
An NAD(+)-dependent D-xylose dehydrogenase, XylB, from Caulobacter crescentus was expressed in Saccharomyces cerevisiae, resulting in production of 17 ± 2 g D-xylonate l(-1) at 0.23 gl(-1)h(-1) from 23 g D-xylose l(-1) (with glucose and ethanol as co-substrates). D-Xylonate titre and
我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.
联系技术服务部门