化驗
99.9%
形狀
wire
製造商/商標名
Goodfellow 436-125-56
電阻係數
4.71 μΩ-cm
長度 × 直徑
200 mm × 0.7 mm
bp
4130 °C (lit.)
mp
2450 °C (lit.)
密度
22.65 g/cm3 (lit.)
SMILES 字串
[Ir]
InChI
1S/Ir
InChI 密鑰
GKOZUEZYRPOHIO-UHFFFAOYSA-N
正在寻找类似产品? 访问 产品对比指南
一般說明
For updated SDS information please visit www.goodfellow.com.
法律資訊
Product of Goodfellow
Accounts of chemical research, 40(12), 1402-1411 (2007-08-04)
Asymmetric hydrogenation is one of the most important catalytic methods for the preparation of optically active compounds. For a long time the range of olefins that could be hydrogenated with high enantiomeric excess was limited to substrates bearing a coordinating
Organic & biomolecular chemistry, 10(16), 3147-3163 (2012-03-13)
Since their discovery in 1997, iridium-catalysed asymmetric allylic substitutions have been developed into a broadly applicable tool for the synthesis of chiral building blocks via C-C and C-heteroatom bond formation. The remarkable generality of these reactions and the high levels
Chemical communications (Cambridge, England), (47)(47), 7278-7287 (2009-12-22)
Existing methods for enantioselective carbonyl allylation, crotylation and tert-prenylation require stoichiometric generation of pre-metallated nucleophiles, and often employ stoichiometric chiral modifiers. Under the conditions of transfer hydrogenation employing an ortho-cyclometallated iridium C,O-benzoate catalyst, enantioselective carbonyl allylations, crotylations and tert-prenylations are
Chemical Society reviews, 33(3), 147-155 (2004-03-18)
In order to mimic the photosynthetic reaction centre and better understand photoinduced electron transfer processes, a family of compounds has been studied for the past 15 years. These are transition metal complexes, M(tpy)(2) where tpy is a 2,2':6',2" terpyridine based
Chemical Society reviews, 36(4), 618-635 (2007-03-28)
The need for novel materials with luminescent properties and advanced processing features requires reliable and reproducible synthetic routes for the design of suitable materials, such as e.g. polypyridyl ruthenium(II) and iridium(III)-containing polymers. The most popular ligand for those purposes is
我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.
联系技术服务部门