跳转至内容
Merck

913111

Sigma-Aldrich

Hexane-1,6-diammonium bromide

greener alternative

别名:

1,6-Hexanediamine, Dihydrobromide (8CI,9CI) 1,6-Hexanediammonium dibromide, Greatcell Solar®, Hexamethylenediamine dihydrobromide, NHEXDAB

登录查看公司和协议定价


About This Item

经验公式(希尔记法):
C6H18Br2N2
CAS号:
分子量:
278.03
分類程式碼代碼:
12352101
NACRES:
NA.23

描述

Identity by (1H NMR)

品質等級

形狀

powder

環保替代產品特色

Design for Energy Efficiency
Learn more about the Principles of Green Chemistry.

sustainability

Greener Alternative Product

顏色

white

環保替代類別

InChI

1S/C6H16N2.2BrH/c7-5-3-1-2-4-6-8;;/h1-8H2;2*1H

InChI 密鑰

XSYPBULLQGGYPJ-UHFFFAOYSA-N

相关类别

一般說明

We are committed to bringing you Greener Alternative Products, which adhere to one or more of The 12 Principles of Greener Chemistry. This product has been enhanced for energy efficiency. Click here for more details.

應用

Organohalide based perovskites have emerged as an important class of material for solar cell applications. The variations/substitution in organohalide cations and anions is employed for the optimization of the band gap, carrier diffusion length, and power conversion efficiency of perovskites based solar cells.

法律資訊

Greatcell Solar® is a registered trademark of Greatcell Energy Ltd.
Greatcell Solar is a registered trademark of Greatcell Solar

儲存類別代碼

11 - Combustible Solids

水污染物質分類(WGK)

WGK 3

閃點(°F)

Not applicable

閃點(°C)

Not applicable


分析证书(COA)

输入产品批号来搜索 分析证书(COA) 。批号可以在产品标签上"批“ (Lot或Batch)字后找到。

已有该产品?

在文件库中查找您最近购买产品的文档。

访问文档库

High Efficiency and High Open Circuit Voltage in Quasi 2D Perovskite Based Solar Cells.
Cohen B E, et al.
Advances in Functional Materials, 27(5), 1604733-1604733 (2017)
Eran Edri et al.
The journal of physical chemistry letters, 4(6), 897-902 (2013-03-21)
Mesoscopic solar cells, based on solution-processed organic-inorganic perovskite absorbers, are a promising avenue for converting solar to electrical energy. We used solution-processed organic-inorganic lead halide perovskite absorbers, in conjunction with organic hole conductors, to form high voltage solar cells. There
Lingling Mao et al.
Journal of the American Chemical Society, 139(14), 5210-5215 (2017-03-18)
Hybrid inorganic-organic perovskites are developing rapidly as high performance semiconductors. Recently, two-dimensional (2D) perovskites were found to have white-light, broadband emission in the visible range that was attributed mainly to the role of self-trapped excitons (STEs). Here, we describe three

我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.

联系技术服务部门