跳转至内容
Merck

806196

Sigma-Aldrich

苄基碘化铵

greener alternative

别名:

Greatcell Solar®, Phenylmethylamine iodide

登录查看公司和协议定价


About This Item

经验公式(希尔记法):
C7H10IN
分子量:
235.07
MDL號碼:
分類程式碼代碼:
12352101
PubChem物質ID:
NACRES:
NA.23

化驗

98%

品質等級

形狀

powder

環保替代產品特色

Design for Energy Efficiency
Learn more about the Principles of Green Chemistry.

sustainability

Greener Alternative Product

mp

179.35 °C

環保替代類別

SMILES 字串

NCC1=CC=CC=C1.I

InChI

1S/C7H9N.HI/c8-6-7-4-2-1-3-5-7;/h1-5H,6,8H2;1H

InChI 密鑰

PPCHYMCMRUGLHR-UHFFFAOYSA-N

相关类别

一般說明

We are committed to bringing you Greener Alternative Products, which adhere to one or more of The 12 Principles of Greener Chemistry. This product has been enhanced for energy efficiency. Click here for more details.

應用

Benzylammonium iodide can be used as an additive to improve the crystal formation of perovskites, which further facilitate an increase in the efficiency of solar cells. It can also be used in the formation of alkaline exchange membrane based fuel cells.
The iodide and bromide based alkylated halides find applications as precursors for fabrication of perovskites for photovoltaic applications.

法律資訊

Product of Greatcell Solar®
Greatcell Solar is a registered trademark of Greatcell Solar

象形圖

Exclamation mark

訊號詞

Warning

危險分類

Acute Tox. 4 Oral - Eye Irrit. 2 - Skin Irrit. 2 - STOT SE 3

標靶器官

Respiratory system

儲存類別代碼

11 - Combustible Solids

水污染物質分類(WGK)

WGK 3

閃點(°F)

Not applicable

閃點(°C)

Not applicable


分析证书(COA)

输入产品批号来搜索 分析证书(COA) 。批号可以在产品标签上"批“ (Lot或Batch)字后找到。

已有该产品?

在文件库中查找您最近购买产品的文档。

访问文档库

Mechanistic analysis of ammonium cation stability for alkaline exchange membrane fuel cells
Mohanty AD and Bae C
Journal of Material Chemistry A, 2(41), 17314-17320 (2014)
Ammonium-iodide-salt additives induced photovoltaic performance enhancement in one-step solution process for perovskite solar cells
Yang Y, et al.
Journal of alloys and compounds, 684, 84-90 (2016)
Efficient solar cells with enhanced humidity and heat stability based on benzylammonium-caesium-formamidinium mixed-dimensional perovskites
Liu G, et al.
Journal of Material Chemistry A, 6(37), 18067-18074 (2018)
So-Yeon Kim et al.
Nanoscale, 11(30), 14330-14338 (2019-07-20)
We report here the effect of interlayer spacing in 2-dimensional (2D) perovskites of [C6H5(CH2)nNH3]2PbI4 (anilinium (An) for n = 0, benzylammonium (BzA) for n = 1 and phenylethylammonium (PEA) for n = 2) on resistive switching properties. X-ray diffraction (XRD)
Zhi-Kuang Tan et al.
Nature nanotechnology, 9(9), 687-692 (2014-08-05)
Solid-state light-emitting devices based on direct-bandgap semiconductors have, over the past two decades, been utilized as energy-efficient sources of lighting. However, fabrication of these devices typically relies on expensive high-temperature and high-vacuum processes, rendering them uneconomical for use in large-area

商品

Next generation solar cells have the potential to achieve conversion efficiencies beyond the Shockley-Queisser (S-Q) limit while also significantly lowering production costs.

Dr. Perini and Professor Correa-Baena discuss the latest research and effort to obtain higher performance and stability of perovskite materials.

For several decades, the need for an environmentally sustainable and commercially viable source of energy has driven extensive research aimed at achieving high efficiency power generation systems that can be manufactured at low cost.

近几十年来,人们对于环境可持续、商业可行的能源的迫切需求,催生并推动了大量致力实现低生产成本、高能效发电系统的研究工作。

我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.

联系技术服务部门