跳转至内容
Merck

805807

Sigma-Aldrich

FK 269 Co (III) TFSI 盐

别名:

Greatcell Solar®, bis(2,6-di(1H-pyrazol-1-yl)pyridine)cobalt(III) tri[bis(trifluoromethane)sulfonimide]

登录查看公司和协议定价


About This Item

经验公式(希尔记法):
C28H18CoF18N13O12S6
分子量:
1321.82
分類程式碼代碼:
12352103
PubChem物質ID:
NACRES:
NA.23

化驗

98%

形狀

powder

mp

169.5 °C

SMILES 字串

O=S([N-]S(=O)(C(F)(F)F)=O)(C(F)(F)F)=O.C1(N2N=CC=C2)=CC=CC(N3C=CC=N3)=N1.N4(C5=NC(N6N=CC=C6)=CC=C5)N=CC=C4.[Co+3]

InChI

1S/2C11H9N5.C2F6NO4S2.Co/c2*1-4-10(15-8-2-6-12-15)14-11(5-1)16-9-3-7-13-16;3-1(4,5)14(10,11)9-15(12,13)2(6,7)8;/h2*1-9H;;/q;;-1;+3

InChI 密鑰

ZURJMCGADUHLSF-UHFFFAOYSA-N

應用

Use this cobalt complexes to increase photovoltages of liquid electrolyte cells substantially or to achieve ultrahigh performance with solid state photovoltaic devices, such as perovskite and dye-sensitized solar cells
FK269 cobalt complexes offer guaranteed performance, high reproducibility, consistent results, and are of highest purity. In comparison to triiodide-based redox electrolytes, cobalt complexes in general increase photovoltages and, particularly at lower light levels (e.g. for indoor applications), significantly increase device power output.

法律資訊

Product of Greatcell Solar®
Greatcell Solar is a registered trademark of Greatcell Solar

象形圖

Exclamation mark

訊號詞

Warning

危險分類

Eye Irrit. 2 - Skin Irrit. 2 - Skin Sens. 1 - STOT SE 3

標靶器官

Respiratory system

儲存類別代碼

11 - Combustible Solids

水污染物質分類(WGK)

WGK 3

閃點(°F)

Not applicable

閃點(°C)

Not applicable


分析证书(COA)

输入产品批号来搜索 分析证书(COA) 。批号可以在产品标签上"批“ (Lot或Batch)字后找到。

已有该产品?

在文件库中查找您最近购买产品的文档。

访问文档库

Teck Ming Koh et al.
ChemSusChem, 7(7), 1909-1914 (2014-05-23)
In this work, we report a new cobalt(III) complex, tris[2-(1H-pyrazol-1-yl)pyrimidine]cobalt(III) tris[bis(trifluoromethylsulfonyl)imide] (MY11), with deep redox potential (1.27 V vs NHE) as dopant for 2,2',7,7'-tetrakis-(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene (spiro-OMeTAD). This dopant possesses, to the best of our knowledge, the deepest redox potential among all
Sandra M Feldt et al.
Physical chemistry chemical physics : PCCP, 15(19), 7087-7097 (2013-04-05)
Regeneration and recombination kinetics was investigated for dye-sensitized solar cells (DSCs) using a series of different cobalt polypyridine redox couples, with redox potentials ranging between 0.34 and 1.20 V vs. NHE. Marcus theory was applied to explain the rate of
Julian Burschka et al.
Nature, 499(7458), 316-319 (2013-07-12)
Following pioneering work, solution-processable organic-inorganic hybrid perovskites-such as CH3NH3PbX3 (X = Cl, Br, I)-have attracted attention as light-harvesting materials for mesoscopic solar cells. So far, the perovskite pigment has been deposited in a single step onto mesoporous metal oxide films
Edoardo Mosconi et al.
Journal of the American Chemical Society, 134(47), 19438-19453 (2012-11-02)
We report a combined experimental and computational investigation to understand the nature of the interactions between cobalt redox mediators and TiO(2) surfaces sensitized by ruthenium and organic dyes, and their impact on the performance of the corresponding dye-sensitized solar cells

商品

Next generation solar cells have the potential to achieve conversion efficiencies beyond the Shockley-Queisser (S-Q) limit while also significantly lowering production costs.

Dr. Perini and Professor Correa-Baena discuss the latest research and effort to obtain higher performance and stability of perovskite materials.

For several decades, the need for an environmentally sustainable and commercially viable source of energy has driven extensive research aimed at achieving high efficiency power generation systems that can be manufactured at low cost.

近几十年来,人们对于环境可持续、商业可行的能源的迫切需求,催生并推动了大量致力实现低生产成本、高能效发电系统的研究工作。

我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.

联系技术服务部门