化驗
95%
形狀
sublimed
損耗
0.5 wt. %, 405 °C
mp
373-378 °C
半導體屬性
P-type (mobility=0.05-0.12 cm2/V·s)
InChI
1S/C46H46S2/c1-3-5-7-9-11-31-13-17-39-35(25-31)29-37-27-33(15-19-41(37)39)43-21-23-45(47-43)46-24-22-44(48-46)34-16-20-42-38(28-34)30-36-26-32(14-18-40(36)42)12-10-8-6-4-2/h13-28H,3-12,29-30H2,1-2H3
InChI 密鑰
IEOMVXSYYUOEQW-UHFFFAOYSA-N
正在寻找类似产品? 访问 产品对比指南
應用
儲存類別代碼
11 - Combustible Solids
水污染物質分類(WGK)
WGK 3
閃點(°F)
Not applicable
閃點(°C)
Not applicable
商品
Since their discovery, organic light emitting devices (OLEDs) have evolved from a scientific curiosity into a technology with applications in flat panel displays and the potential to revolutionize the lighting market. During their relatively short history, the technology has rapidly advanced, and device efficiencies have increased more than 20-fold, approaching the theoretical limit for internal quantum efficiencies.
Intrinsically stretchable active layers for organic field-effect transistors (OFET) are discussed. Polymer structural modification & post-polymerization modifications are 2 methods to achieve this.
Solution-processed organic photovoltaic devices (OPVs) have emerged as a promising clean energy generating technology due to their ease of fabrication, potential to enable low-cost manufacturing via printing or coating techniques, and ability to be incorporated onto light weight, flexible substrates.
Thin, lightweight, and flexible electronic devices meet widespread demand for scalable, portable, and robust technology.
我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.
联系技术服务部门