Accéder au contenu
Merck

Synthesis of mercaptopropyl-(phenylene)s-benzoates passivated gold nanoparticles: Implications for plasmonic photovoltaic cells.

Journal of colloid and interface science (2015-07-01)
Arxel de León, Eduardo Arias, Ivana Moggio, Carlos Gallardo-Vega, Ronald Ziolo, Oliverio Rodríguez, Silvana Trigari, Emilia Giorgetti, Carl Leibig, Dean Evans
RÉSUMÉ

The incorporation of gold nanoparticles in heterojunction solar cells is expected to increase the efficiency due to plasmon effects, but the literature studies are sometimes controversial. In this work, gold nanoparticles passivated with (Ph)n-(CH2)3SH (n=1, 2, 3) have been synthesized by reduction of tetrachloroauric acid with sodium borohydride in two ways: (1) one-phase where both the thiol and the gold salt are solubilized in a mixture of methanol with acetic acid: Au-s-(Ph)n or (2), two-phase, using tetraoctylammonium bromide (TOAB) to transfer gold from water to toluene where the thiol is solubilized, Au(TOAB)-s-(Ph)n. The morphological, experimental and simulated optical properties were studied and analyzed as a function of the thiol and of the synthetic procedure in order to correlate them with the efficiency of plasmonic hybrid solar cells in the following configuration ITO/PEDOT:PSS/P3HT:PCBM-C60:Au-nanoparticles/Field's metal, where PSS is poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate), P3HT is poly(3-hexylthiophene-2,5-diyl) and PCBM-C60 is [6,6]-Phenyl C61 butyric acid methyl ester. Our findings indicate that the gold nanoparticles incorporation is affecting the electrical properties of the active layer giving a maximum efficiency for Au-s-(Ph)3. Moreover, TOAB, which is usually used in the synthesis of thiol passivated gold nanoparticles, has negative effects in both plasmonic and electrical properties. This result is important for optoelectronic applications of gold nanoparticles prepared with any procedures that involve TOAB.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Borohydrure de sodium, powder, ≥98.0%
Sigma-Aldrich
Borohydrure de sodium, ReagentPlus®, 99%
Sigma-Aldrich
1,8-Diazabicyclo[5.4.0]undéc-7-ène, 98%
Sigma-Aldrich
Dichlorométhane, anhydrous, ≥99.8%, contains 40-150 ppm amylene as stabilizer
Sigma-Aldrich
Méthanol, anhydrous, 99.8%
Sigma-Aldrich
Borohydrure de sodium, granular, 99.99% trace metals basis
Sigma-Aldrich
Borohydrure de sodium, purum p.a., ≥96% (gas-volumetric)
Sigma-Aldrich
Acide benzoique, ACS reagent, ≥99.5%
Sigma-Aldrich
Bromure de tétraoctylammonium, 98%
Sigma-Aldrich
Isocyanate d'éthyle, 98%
Sigma-Aldrich
Acide benzoique, ≥99.5%, FCC, FG
Sigma-Aldrich
Sodium borohydride solution, ~12 wt. % in 14 M NaOH
Sigma-Aldrich
Borohydrure de sodium, granular, 10-40 mesh, 98%
Sigma-Aldrich
Biphenyl-4-carboxylic acid, 95%
Sigma-Aldrich
3-Chloro-1-propanethiol, 98%
Sigma-Aldrich
Acide benzoique, meets analytical specification of Ph. Eur., BP, USP, FCC, E210, 99.5-100.5% (alkalimetric)
Sigma-Aldrich
Borohydrure de sodium, caplets (18 × 10 × 8 mm), 98%
Sigma-Aldrich
Acide benzoique, ReagentPlus®, 99%
Sigma-Aldrich
Sodium borohydride solution, 2.0 M in triethylene glycol dimethyl ether
Sigma-Aldrich
Borohydrure de sodium, powder
Sigma-Aldrich
Méthanol, NMR reference standard
Sigma-Aldrich
Acide benzoique, natural, ≥99.5%, FCC, FG
Sigma-Aldrich
Dichlorométhane, suitable for HPLC, ≥99.9%, contains 40-150 ppm amylene as stabilizer
Sigma-Aldrich
Methanol solution, NMR reference standard, 4% in methanol-d4 (99.8 atom % D), NMR tube size 3 mm × 8 in.
Sigma-Aldrich
Acide benzoique, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥99.9% (alkalimetric)
Sigma-Aldrich
Methanol-12C, 99.95 atom % 12C
Sigma-Aldrich
Acide benzoique, purified by sublimation, ≥99%