Accéder au contenu
Merck

The spinal anti-inflammatory mechanism of motor cortex stimulation: cause of success and refractoriness in neuropathic pain?

Journal of neuroinflammation (2015-01-21)
Guilherme D Silva, Patrícia S S Lopes, Erich T Fonoff, Rosana L Pagano
RÉSUMÉ

Motor cortex stimulation (MCS) is an effective treatment in neuropathic pain refractory to pharmacological management. However, analgesia is not satisfactorily obtained in one third of patients. Given the importance of understanding the mechanisms to overcome therapeutic limitations, we addressed the question: what mechanisms can explain both MCS effectiveness and refractoriness? Considering the crucial role of spinal neuroimmune activation in neuropathic pain pathophysiology, we hypothesized that modulation of spinal astrocyte and microglia activity is one of the mechanisms of action of MCS. Rats with peripheral neuropathy (chronic nerve injury model) underwent MCS and were evaluated with a nociceptive test. Following the test, these animals were divided into two groups: MCS-responsive and MCS-refractory. We also evaluated a group of neuropathic rats not stimulated and a group of sham-operated rats. Some assays included rats with peripheral neuropathy that were treated with AM251 (a cannabinoid antagonist/inverse agonist) or saline before MCS. Finally, we performed immunohistochemical analyses of glial cells (microglia and astrocytes), cytokines (TNF-α and IL-1β), cannabinoid type 2 (CB2), μ-opioid (MOR), and purinergic P2X4 receptors in the dorsal horn of the spinal cord (DHSC). MCS reversed mechanical hyperalgesia, inhibited astrocyte and microglial activity, decreased proinflammatory cytokine staining, enhanced CB2 staining, and downregulated P2X4 receptors in the DHSC ipsilateral to sciatic injury. Spinal MOR staining was also inhibited upon MCS. Pre-treatment with AM251 blocked the effects of MCS, including the inhibitory mechanism on cells. Finally, MCS-refractory animals showed similar CB2, but higher P2X4 and MOR staining intensity in the DHSC in comparison to MCS-responsive rats. These results indicate that MCS induces analgesia through a spinal anti-neuroinflammatory effect and the activation of the cannabinoid and opioid systems via descending inhibitory pathways. As a possible explanation for MCS refractoriness, we propose that CB2 activation is compromised, leading to cannabinoid resistance and consequently to the perpetuation of neuroinflammation and opioid inefficacy.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Peroxyde d'hydrogène solution, contains inhibitor, 30 wt. % in H2O, ACS reagent
Sigma-Aldrich
Peroxyde d'hydrogène solution, 30 % (w/w) in H2O, contains stabilizer
Sigma-Aldrich
Chlorure de sodium, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
Peroxyde d'hydrogène solution, 50 wt. % in H2O, stabilized
Sigma-Aldrich
Chlorure de sodium solution, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
Chlorure de sodium solution, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
Chlorure de sodium, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
Peroxyde d'hydrogène solution, 30% (w/w), puriss. p.a., reag. ISO, reag. Ph. Eur.
SAFC
Chlorure de sodium solution, 5 M
Sigma-Aldrich
Anticorps monoclonal anti-protéine acide fibrillaire gliale (GFAP) antibody produced in mouse, clone G-A-5, ascites fluid
Sigma-Aldrich
Chlorure de sodium solution, BioUltra, for molecular biology, ~5 M in H2O
Sigma-Aldrich
Peroxyde d'hydrogène solution, contains ~200 ppm acetanilide as stabilizer, 3 wt. % in H2O
Sigma-Aldrich
Peroxyde d'hydrogène solution, contains inhibitor, 35 wt. % in H2O
Sigma-Aldrich
Chlorure de sodium, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
Chlorure de sodium, 99.999% trace metals basis
Sigma-Aldrich
Peroxyde d'hydrogène solution, purum p.a., ≥35% (RT)
Sigma-Aldrich
Chlorure de sodium, BioXtra, ≥99.5% (AT)
Millipore
Peroxyde d'hydrogène solution, 3%, suitable for microbiology
Sigma-Aldrich
Chlorure de sodium, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
Sigma-Aldrich
Chlorure de sodium, BioPerformance Certified, ≥99% (titration), suitable for insect cell culture, suitable for plant cell culture
Sigma-Aldrich
AM251, >98% (HPLC), solid
Sigma-Aldrich
Chlorure de sodium solution, 5 M
Sigma-Aldrich
Chlorure de sodium, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
Sodium chloride-35Cl, 99 atom % 35Cl
Sigma-Aldrich
Peroxyde d'hydrogène solution, 34.5-36.5%
Supelco
Peroxyde d'hydrogène solution, ≥30%, for trace analysis
Sigma-Aldrich
Peroxyde d'hydrogène solution, contains inhibitor, 30 wt. % in H2O, meets USP testing specifications
Sigma-Aldrich
Chlorure de sodium, random crystals, optical grade, 99.9% trace metals basis
Supelco
Peroxyde d'hydrogène solution, 30 % (w/w), for ultratrace analysis
Sigma-Aldrich
Anti-Tumor Necrosis Factor-α Antibody, Chemicon®, from rabbit