Accéder au contenu
Merck
Toutes les photos(1)

Key Documents

912794

Sigma-Aldrich

Ni(COD)(DQ)

≥95%

Synonyme(s) :

Bis(1,5-cyclooctadiene)(duroquinone) nickel(0)

Se connecterpour consulter vos tarifs contractuels et ceux de votre entreprise/organisme


About This Item

Formule empirique (notation de Hill):
C18H24NiO2
Numéro CAS:
Poids moléculaire :
331.08
Code UNSPSC :
12352103
Nomenclature NACRES :
NA.22

Niveau de qualité

Pureté

≥95%

Forme

powder

Pertinence de la réaction

reagent type: catalyst
reaction type: Cross Couplings

Paramètres

temperature stable

Pf

227 °C (decomposition)

Application

Ni(COD)(DQ), as shown by the Engle lab, is an air- and thermally stable Ni(0) precatalyst. This 18-electron complex has a unique stability profile allowing for easy reaction setup outside an inert atmosphere. Transformations such as the Suzuki-Miyaura coupling, borylation of aryl halides, and alkene hydroarylation have been demonstrated.

Produit(s) apparenté(s)

Réf. du produit
Description
Tarif

Pictogrammes

Health hazardExclamation mark

Mention d'avertissement

Danger

Mentions de danger

Classification des risques

Carc. 2 - Skin Sens. 1 - STOT RE 1

Organes cibles

Lungs

Code de la classe de stockage

6.1C - Combustible acute toxic Cat.3 / toxic compounds or compounds which causing chronic effects

Point d'éclair (°F)

Not applicable

Point d'éclair (°C)

Not applicable


Faites votre choix parmi les versions les plus récentes :

Certificats d'analyse (COA)

Lot/Batch Number

Vous ne trouvez pas la bonne version ?

Si vous avez besoin d'une version particulière, vous pouvez rechercher un certificat spécifique par le numéro de lot.

Déjà en possession de ce produit ?

Retrouvez la documentation relative aux produits que vous avez récemment achetés dans la Bibliothèque de documents.

Consulter la Bibliothèque de documents

Van T Tran et al.
Angewandte Chemie (International ed. in English) (2020-02-18)
We report that Ni(COD)(DQ) (COD=1,5-cyclooctadiene, DQ=duroquinone), an air-stable 18-electron complex originally described by Schrauzer in 1962, is a competent precatalyst for a variety of nickel-catalyzed synthetic methods from the literature. Due to its apparent stability, use of Ni(COD)(DQ) as a

Contenu apparenté

The Engle lab strives to invent novel catalytic alkene and alkyne functionalization methods to expedite organic synthesis. These transformations offer a powerful platform for conversion of simple, abundant, and planar starting materials into densely functionalized, stereochemically complex products in a single step. To this end, the Engle lab has developed various substrate directivity strategies in which native functional groups can be temporarily masked with auxiliaries that are capable of reversibly binding the metal catalyst, thereby enhancing kinetic reactivity, suppressing unwanted side reactions, and facilitating high selectivity. The Engle lab works with us to make synthetically enabling directing groups, catalysts, and ligands readily available to the synthetic community for reaction discovery and small-molecule synthesis.

The Engle lab strives to invent novel catalytic alkene and alkyne functionalization methods to expedite organic synthesis. These transformations offer a powerful platform for conversion of simple, abundant, and planar starting materials into densely functionalized, stereochemically complex products in a single step. To this end, the Engle lab has developed various substrate directivity strategies in which native functional groups can be temporarily masked with auxiliaries that are capable of reversibly binding the metal catalyst, thereby enhancing kinetic reactivity, suppressing unwanted side reactions, and facilitating high selectivity. The Engle lab works with us to make synthetically enabling directing groups, catalysts, and ligands readily available to the synthetic community for reaction discovery and small-molecule synthesis.

The Engle lab strives to invent novel catalytic alkene and alkyne functionalization methods to expedite organic synthesis. These transformations offer a powerful platform for conversion of simple, abundant, and planar starting materials into densely functionalized, stereochemically complex products in a single step. To this end, the Engle lab has developed various substrate directivity strategies in which native functional groups can be temporarily masked with auxiliaries that are capable of reversibly binding the metal catalyst, thereby enhancing kinetic reactivity, suppressing unwanted side reactions, and facilitating high selectivity. The Engle lab works with us to make synthetically enabling directing groups, catalysts, and ligands readily available to the synthetic community for reaction discovery and small-molecule synthesis.

The Engle lab strives to invent novel catalytic alkene and alkyne functionalization methods to expedite organic synthesis. These transformations offer a powerful platform for conversion of simple, abundant, and planar starting materials into densely functionalized, stereochemically complex products in a single step. To this end, the Engle lab has developed various substrate directivity strategies in which native functional groups can be temporarily masked with auxiliaries that are capable of reversibly binding the metal catalyst, thereby enhancing kinetic reactivity, suppressing unwanted side reactions, and facilitating high selectivity. The Engle lab works with us to make synthetically enabling directing groups, catalysts, and ligands readily available to the synthetic community for reaction discovery and small-molecule synthesis.

Notre équipe de scientifiques dispose d'une expérience dans tous les secteurs de la recherche, notamment en sciences de la vie, science des matériaux, synthèse chimique, chromatographie, analyse et dans de nombreux autres domaines..

Contacter notre Service technique