Accéder au contenu
Merck

The Signaling Mechanism of Contraction Induced by ATP and UTP in Feline Esophageal Smooth Muscle Cells.

Molecules and cells (2015-05-28)
Tae Hoon Kwon, Hyunwoo Jung, Eun Jeong Cho, Ji Hoon Jeong, Uy Dong Sohn
RÉSUMÉ

P2 receptors are membrane-bound receptors for extracellular nucleotides such as ATP and UTP. P2 receptors have been classified as ligand-gated ion channels or P2X receptors and G protein-coupled P2Y receptors. Recently, purinergic signaling has begun to attract attention as a potential therapeutic target for a variety of diseases especially associated with gastroenterology. This study determined the ATP and UTP-induced receptor signaling mechanism in feline esophageal contraction. Contraction of dispersed feline esophageal smooth muscle cells was measured by scanning micrometry. Phosphorylation of MLC20 was determined by western blot analysis. ATP and UTP elicited maximum esophageal contraction at 30 s and 10 μM concentration. Contraction of dispersed cells treated with 10 μM ATP was inhibited by nifedipine. However, contraction induced by 0.1 μM ATP, 0.1 μM UTP and 10 μM UTP was decreased by U73122, chelerythrine, ML-9, PTX and GDPβS. Contraction induced by 0.1 μM ATP and UTP was inhibited by Gαi3 or Gαq antibodies and by PLCβ1 or PLCβ3 antibodies. Phosphorylated MLC20 was increased by ATP and UTP treatment. In conclusion, esophageal contraction induced by ATP and UTP was preferentially mediated by P2Y receptors coupled to Gαi3 and G q proteins, which activate PLCβ1 and PLCβ3. Subsequently, increased intracellular Ca(2+) and activated PKC triggered stimulation of MLC kinase and inhibition of MLC phosphatase. Finally, increased pMLC20 generated esophageal contraction.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
HEPES, ≥99.5% (titration)
Sigma-Aldrich
Sodium Dodecyl Sulfate, BioReagent, suitable for electrophoresis, for molecular biology, ≥98.5% (GC)
Sigma-Aldrich
Glycine, ReagentPlus®, ≥99% (HPLC)
Sigma-Aldrich
HEPES, BioPerformance Certified, ≥99.5% (titration), suitable for cell culture
Sigma-Aldrich
2-mercaptoéthanol, for molecular biology, suitable for electrophoresis, suitable for cell culture, BioReagent, 99% (GC/titration)
Sigma-Aldrich
Glycine, suitable for electrophoresis, ≥99%
Sigma-Aldrich
2-mercaptoéthanol, ≥99.0%
Sigma-Aldrich
Sodium Dodecyl Sulfate, ≥99.0% (GC), dust-free pellets
Sigma-Aldrich
Ammonium persulfate, for molecular biology, suitable for electrophoresis, ≥98%
Sigma-Aldrich
DL-Dithiothréitol solution, BioUltra, for molecular biology, ~1 M in H2O
Sigma-Aldrich
N,N,N′,N′-Tetramethylethylenediamine, BioReagent, suitable for electrophoresis, ≥99.0%
Sigma-Aldrich
Glycine, BioUltra, for molecular biology, ≥99.0% (NT)
Supelco
DL-Dithiothréitol solution, 1 M in H2O
Sigma-Aldrich
Sodium Dodecyl Sulfate solution, BioUltra, for molecular biology, 10% in H2O
Sigma-Aldrich
Fluorure de phénylméthanesulfonyle, ≥98.5% (GC)
Sigma-Aldrich
Acide éthylène glycol-bis(2-aminoéthyléther)-N,N,N′,N′-tétraacétique, for molecular biology, ≥97.0%
Sigma-Aldrich
2-mercaptoéthanol, BioUltra, for molecular biology, ≥99.0% (GC)
Sigma-Aldrich
N,N,N′,N′-Tetramethylethylenediamine, BioReagent, for molecular biology, ≥99% (GC)
Sigma-Aldrich
HEPES, BioUltra, for molecular biology, ≥99.5% (T)
Sigma-Aldrich
Sodium Dodecyl Sulfate solution, BioUltra, for molecular biology, 20% in H2O
Sigma-Aldrich
HEPES solution, 1 M in H2O
Sigma-Aldrich
Glycine, from non-animal source, meets EP, JP, USP testing specifications, suitable for cell culture, ≥98.5%
Sigma-Aldrich
Sodium Dodecyl Sulfate, BioUltra, for molecular biology, ≥99.0% (GC)
Sigma-Aldrich
N,N,N′,N′-Tetramethylethylenediamine, ≥99.5%, purified by redistillation
Sigma-Aldrich
Acide éthylènediaminetétraacétique solution, 0.02% in DPBS (0.5 mM), sterile-filtered, BioReagent, suitable for cell culture
SAFC
Glycine
Sigma-Aldrich
Ethylenediaminetetraacetic acid, anhydrous, crystalline, BioReagent, suitable for cell culture
SAFC
HEPES
Sigma-Aldrich
Ethylenediaminetetraacetic acid, 99.995% trace metals basis
Sigma-Aldrich
Fluorure de phénylméthanesulfonyle, ≥99.0% (T)