Accéder au contenu
Merck
  • Evaluation and comparison of the kinetic performance of ultra-high performance liquid chromatography and high-performance liquid chromatography columns in hydrophilic interaction and reversed-phase liquid chromatography conditions.

Evaluation and comparison of the kinetic performance of ultra-high performance liquid chromatography and high-performance liquid chromatography columns in hydrophilic interaction and reversed-phase liquid chromatography conditions.

Journal of chromatography. A (2014-12-03)
Huiying Song, Erwin Adams, Gert Desmet, Deirdre Cabooter
RÉSUMÉ

An intrinsic performance comparison is made of the reduction in analysis time that can be obtained when switching from HPLC to UHPLC column formats in HILIC and reversed-phase conditions. A detailed overview of the packing characteristics of both stationary phase types is given first. It is demonstrated that HILIC columns demonstrate higher external porosity values than their reversed-phase counterparts resulting in lower flow resistance values. Column total porosity values determined from the elution time of a small marker molecule are shown to depend strongly on the composition of the mobile phase. To omit errors that might arise from an over- or underestimation of the column void time, all plate height and kinetic plot data are therefore expressed as a function of the interstitial velocity. Although only a limited number of columns are evaluated in this study, it is shown that the column efficiency of the HILIC columns is lower than that of their reversed-phase counterparts, at least for the compounds evaluated here. Despite this lower efficiency, the kinetic performance of both stationary phase types is similar, due to the much lower viscosity of the mobile phases typically used in HILIC conditions. Finally, it is demonstrated that a similar, yet slightly larger reduction in analysis time can be obtained when switching from HPLC column formats to UHPLC formats in HILIC compared to reversed-phase conditions.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Acétonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Tetrahydrofurane, inhibitor-free, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Dichlorométhane, suitable for HPLC, ≥99.8%, contains amylene as stabilizer
Sigma-Aldrich
Acide acétique, glacial, ACS reagent, ≥99.7%
Sigma-Aldrich
Acétonitrile, HPLC Plus, ≥99.9%
Sigma-Aldrich
Dichlorométhane, contains 40-150 ppm amylene as stabilizer, ACS reagent, ≥99.5%
Sigma-Aldrich
Acide acétique, glacial, ReagentPlus®, ≥99%
Sigma-Aldrich
Tetrahydrofurane, contains 250 ppm BHT as inhibitor, ACS reagent, ≥99.0%
Sigma-Aldrich
Dichlorométhane, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%, contains 50-150 ppm amylene as stabilizer
Sigma-Aldrich
Acétate d′ammonium, ACS reagent, ≥97%
Sigma-Aldrich
Acétonitrile, ACS reagent, ≥99.5%
Sigma-Aldrich
Acétate d′ammonium, ≥99.99% trace metals basis
Sigma-Aldrich
Acétonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Acide acétique, glacial, ≥99.99% trace metals basis
Sigma-Aldrich
Acide acétique solution, suitable for HPLC
Sigma-Aldrich
Dichlorométhane, ACS reagent, ≥99.5%, contains 40-150 ppm amylene as stabilizer
Sigma-Aldrich
Acétonitrile, anhydrous, 99.8%
Sigma-Aldrich
Tetrahydrofurane, anhydrous, ≥99.9%, inhibitor-free
Sigma-Aldrich
Thymidine, powder, BioReagent, suitable for cell culture
Sigma-Aldrich
Uracile, ≥99.0%
Sigma-Aldrich
Dichlorométhane, anhydrous, ≥99.8%, contains 40-150 ppm amylene as stabilizer
Sigma-Aldrich
Adénine, ≥99%
Sigma-Aldrich
Adenosine, ≥99%
Sigma-Aldrich
Acétate d′ammonium, for molecular biology, ≥98%
Sigma-Aldrich
Thymidine, ≥99%
Sigma-Aldrich
Acétate d′ammonium solution, for molecular biology, 7.5 M
Sigma-Aldrich
Tetrahydrofurane, anhydrous, contains 250 ppm BHT as inhibitor, ≥99.9%
Sigma-Aldrich
Guanine, 98%
Sigma-Aldrich
Acide acétique, for luminescence, BioUltra, ≥99.5% (GC)
Sigma-Aldrich
Adénine, BioReagent, suitable for cell culture