Accéder au contenu
Merck

Prostaglandin E2 elicits greater bronchodilation than salbutamol in mouse intrapulmonary airways in lung slices.

Pulmonary pharmacology & therapeutics (2013-12-03)
M FitzPatrick, C Donovan, J E Bourke
RÉSUMÉ

Current asthma therapy may not adequately target contraction of smaller intrapulmonary airways, which are a major site of airway obstruction and inflammation. The aim of this study was to characterise responses of mouse intrapulmonary airways to prostaglandin E(2) (PGE(2)) and compare its dilator efficacy with the β(2)-adrenoceptor agonist salbutamol in situ, using lung slices. Lung slices (150 μm) were prepared from male Balb/C mice. Changes in intrapulmonary airway lumen area were recorded and analysed by phase-contrast microscopy. Relaxation to PGE(2) and salbutamol were assessed following various levels of pre-contraction with methacholine, serotonin or endothelin-1, as well as following overnight incubation with PGE(2) or salbutamol. The mechanism of PGE(2)-mediated relaxation was explored using selective EP antagonists (EP(1/2) AH6809; EP(4) L-161982) and Ca(2+)-permeabilized slices, where airway responses are due to regulation of Ca(2+)-sensitivity alone. PGE2 elicited EP(1/2)-mediated relaxation of intrapulmonary airways. PGE(2) was more potent than salbutamol in opposing submaximal pre-contraction to all constrictors tested, and only PGE(2) opposed maximal pre-contraction with endothelin-1. Relaxation to PGE(2) was maintained when contraction to methacholine was mediated via increased Ca(2+)-sensitivity alone. PGE(2) was less sensitive to homologous or heterologous desensitization of its receptors than salbutamol. The greater efficacy and potency of PGE(2) compared to salbutamol in mouse intrapulmonary airways supports further investigation of the mechanisms underlying this improved dilator responsiveness for the treatment of severe asthma.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Diméthylsulfoxyde, Hybri-Max, sterile-filtered, BioReagent, suitable for hybridoma, ≥99.7%
Sigma-Aldrich
Diméthylsulfoxyde, ACS reagent, ≥99.9%
Sigma-Aldrich
Diméthylsulfoxyde, for molecular biology
Sigma-Aldrich
Diméthylsulfoxyde, suitable for HPLC, ≥99.7%
Sigma-Aldrich
Diméthylsulfoxyde, sterile-filtered, BioPerformance Certified, meets EP, USP testing specifications, suitable for hybridoma
Sigma-Aldrich
Diméthylsulfoxyde, ReagentPlus®, ≥99.5%
Sigma-Aldrich
HEPES, ≥99.5% (titration)
Sigma-Aldrich
HEPES, BioPerformance Certified, ≥99.5% (titration), suitable for cell culture
Sigma-Aldrich
Diméthylsulfoxyde, ≥99.5% (GC), suitable for plant cell culture
Sigma-Aldrich
Streptomycin sulfate salt, powder, BioReagent, suitable for cell culture
Sigma-Aldrich
HEPES, BioUltra, for molecular biology, ≥99.5% (T)
Sigma-Aldrich
HEPES solution, 1 M in H2O
Sigma-Aldrich
Diméthylsulfoxyde, BioUltra, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
Prostaglandin E2, synthetic, powder, BioReagent, suitable for cell culture
SAFC
HEPES
Sigma-Aldrich
Caféine, anhydrous, 99%, FCC, FG
Sigma-Aldrich
Diméthylsulfoxyde, PCR Reagent
USP
Caféine, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
HEPES, BioXtra, suitable for mouse embryo cell culture, ≥99.5% (titration)
SAFC
HEPES
Sigma-Aldrich
Caféine, powder, ReagentPlus®
Sigma-Aldrich
Serotonin creatinine sulfate monohydrate, powder
USP
Caféine, United States Pharmacopeia (USP) Reference Standard
Supelco
Caféine, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Diméthylsulfoxyde, anhydrous, ≥99.9%
Sigma-Aldrich
Streptomycin sulfate salt, powder, BioXtra, suitable for mouse embryo cell culture
Sigma-Aldrich
Salbutamol
Sigma-Aldrich
Prostaglandin E2, γ-irradiated, powder, BioXtra, suitable for cell culture
Sigma-Aldrich
Prostaglandin E2, ≥93% (HPLC), synthetic
Sigma-Aldrich
HEPES, BioXtra, pH 5.0-6.5 (1 M in H2O), ≥99.5% (titration)