Accéder au contenu
Merck
Toutes les photos(2)

Principaux documents

900628

Sigma-Aldrich

Gelatin methacryloyl

gel strength 90-110 g Bloom, degree of substitution 60%

Synonyme(s) :

GelMA, Gelatin methacrylamide, Gelatin methacrylate, GelMa, Gelatin Methacrylate

Se connecterpour consulter vos tarifs contractuels et ceux de votre entreprise/organisme

Sélectionner une taille de conditionnement

1 G
93,70 €

93,70 €


Date d'expédition estimée le16 avril 2025


Devis pour commande en gros

Sélectionner une taille de conditionnement

Changer de vue
1 G
93,70 €

About This Item

Formule linéaire :
(C40H59N11O13)n
Code UNSPSC :
12352202
Nomenclature NACRES :
NA.23

93,70 €


Date d'expédition estimée le16 avril 2025


Devis pour commande en gros

Niveau de qualité

Forme

solid

Température de stockage

2-8°C

Vous recherchez des produits similaires ? Visite Guide de comparaison des produits

Application

Gelatin methacrylate can be used to form cross-linked hydrogels for tissue engineering[1] and 3D printings.[2][3][4] It has been used for endothelial cell morphogenesis,[5] cardiomyocytes,[6] epidermal tissue,[7] injectable tissue constructs,[8] bone differentiation,[9] and cartilage regeneration.[10] Gelatin-methacrylate has been explored in drug delivery applications in the form of microspheres[11] and hydrogels.[12]

Code de la classe de stockage

11 - Combustible Solids

Classe de danger pour l'eau (WGK)

WGK 3

Point d'éclair (°F)

Not applicable

Point d'éclair (°C)

Not applicable


Faites votre choix parmi les versions les plus récentes :

Certificats d'analyse (COA)

Lot/Batch Number

Vous ne trouvez pas la bonne version ?

Si vous avez besoin d'une version particulière, vous pouvez rechercher un certificat spécifique par le numéro de lot.

Déjà en possession de ce produit ?

Retrouvez la documentation relative aux produits que vous avez récemment achetés dans la Bibliothèque de documents.

Consulter la Bibliothèque de documents

Xin Zhao et al.
Advanced healthcare materials, 5(1), 108-118 (2015-04-17)
Natural hydrogels are promising scaffolds to engineer epidermis. Currently, natural hydrogels used to support epidermal regeneration are mainly collagen- or gelatin-based, which mimic the natural dermal extracellular matrix but often suffer from insufficient and uncontrollable mechanical and degradation properties. In
Anh H Nguyen et al.
Acta biomaterialia, 13, 101-110 (2014-12-03)
Gelatin has been commonly used as a delivery vehicle for various biomolecules for tissue engineering and regenerative medicine applications due to its simple fabrication methods, inherent electrostatic binding properties, and proteolytic degradability. Compared to traditional chemical cross-linking methods, such as
Chaenyung Cha et al.
Biomacromolecules, 15(1), 283-290 (2013-12-19)
Microfabrication technology provides a highly versatile platform for engineering hydrogels used in biomedical applications with high-resolution control and injectability. Herein, we present a strategy of microfluidics-assisted fabrication photo-cross-linkable gelatin microgels, coupled with providing protective silica hydrogel layer on the microgel
Kelly M C Tsang et al.
Advanced functional materials, 25(6), 977-986 (2015-09-04)
Hydrogels are often employed as temporary platforms for cell proliferation and tissue organization in vitro. Researchers have incorporated photodegradable moieties into synthetic polymeric hydrogels as a means of achieving spatiotemporal control over material properties. In this study protein-based photodegradable hydrogels
Kristel W M Boere et al.
Acta biomaterialia, 10(6), 2602-2611 (2014-03-05)
Hydrogels can provide a suitable environment for tissue formation by embedded cells, which makes them suitable for applications in regenerative medicine. However, hydrogels possess only limited mechanical strength, and must therefore be reinforced for applications in load-bearing conditions. In most

Articles

Discussion of synthetic modifications to gelatin, improving the three-dimensional (3D) print resolution, and resulting material properties.

Professor Shrike Zhang (Harvard Medical School, USA) discusses advances in 3D-bioprinted tissue models for in vitro drug testing, reviews bioink selections, and provides application examples of 3D bioprinting in tissue model biofabrication.

Protocoles

Frequently asked questions (FAQs) for KAPA SYBR® FAST One-Step qRT-PCR Kits.

Questions

Évaluations

Aucune valeur de notation

Filtres actifs

Notre équipe de scientifiques dispose d'une expérience dans tous les secteurs de la recherche, notamment en sciences de la vie, science des matériaux, synthèse chimique, chromatographie, analyse et dans de nombreux autres domaines..

Contacter notre Service technique