Saltar al contenido
Merck

ShRNA-mediated gene silencing of lipoprotein lipase improves insulin sensitivity in L6 skeletal muscle cells.

Biochemical and biophysical research communications (2015-05-02)
Majib Jan, Jheem D Medh
RESUMEN

In previous studies, we demonstrated that down-regulation of lipoprotein lipase in L6 muscle cells increased insulin-stimulated glucose uptake. In the current study, we used RNA interference technology to silence the LPL gene in L6 cells and generate a LPL-knock-down (LPL-KD) cell line. ShRNA transfected cells showed a 88% reduction in the level of LPL expression. The metabolic response to insulin was compared in wild-type (WT) and LPL-KD cells. Insulin-stimulated glycogen synthesis and glucose oxidation were respectively, 2.4-fold and 2.6-fold greater in LPL-KD cells compared to WT cells. Oxidation of oleic acid was reduced by 50% in LPL-KD cells compared to WT cells even in the absence of insulin. The contribution of LPL in regulating fuel metabolism was confirmed by adding back purified LPL to the culture media of LPL-KD cells. The presence of 10 μg/mL LPL resulted in LPL-KD cells reverting back to lower glycogen synthesis and glucose oxidation and increased fatty acid oxidation. Thus, LPL depletion appeared to mimic the action of insulin. These finding suggests an inverse correlation between muscle LPL levels and insulin-stimulated fuel homeostasis.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
MISSION® esiRNA, targeting human LCP1
Sigma-Aldrich
MISSION® esiRNA, targeting human LPL
Sigma-Aldrich
MISSION® esiRNA, targeting mouse Lcp1
Sigma-Aldrich
MISSION® esiRNA, targeting mouse Lpl