Saltar al contenido
Merck

Structural, nanomechanical, and computational characterization of D,L-cyclic peptide assemblies.

ACS nano (2015-03-12)
Daniel J Rubin, Shahrouz Amini, Feng Zhou, Haibin Su, Ali Miserez, Neel S Joshi
RESUMEN

The rigid geometry and tunable chemistry of D,L-cyclic peptides makes them an intriguing building-block for the rational design of nano- and microscale hierarchically structured materials. Herein, we utilize a combination of electron microscopy, nanomechanical characterization including depth sensing-based bending experiments, and molecular modeling methods to obtain the structural and mechanical characteristics of cyclo-[(Gln-D-Leu)4] (QL4) assemblies. QL4 monomers assemble to form large, rod-like structures with diameters up to 2 μm and lengths of tens to hundreds of micrometers. Image analysis suggests that large assemblies are hierarchically organized from individual tubes that undergo bundling to form larger structures. With an elastic modulus of 11.3 ± 3.3 GPa, hardness of 387 ± 136 MPa and strength (bending) of 98 ± 19 MPa the peptide crystals are among the most robust known proteinaceous micro- and nanofibers. The measured bending modulus of micron-scale fibrils (10.5 ± 0.9 GPa) is in the same range as the Young's modulus measured by nanoindentation indicating that the robust nanoscale network from which the assembly derives its properties is preserved at larger length-scales. Materials selection charts are used to demonstrate the particularly robust properties of QL4 including its specific flexural modulus in which it outperforms a number of biological proteinaceous and nonproteinaceous materials including collagen and enamel. The facile synthesis, high modulus, and low density of QL4 fibers indicate that they may find utility as a filler material in a variety of high efficiency, biocompatible composite materials.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Acetona, ACS reagent, ≥99.5%
Sigma-Aldrich
Diclorometano, suitable for HPLC, ≥99.8%, contains amylene as stabilizer
Sigma-Aldrich
Acetona, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Diclorometano, contains 40-150 ppm amylene as stabilizer, ACS reagent, ≥99.5%
Sigma-Aldrich
Acetona, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%
Sigma-Aldrich
Diclorometano, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%, contains 50-150 ppm amylene as stabilizer
Sigma-Aldrich
Diclorometano, ACS reagent, ≥99.5%, contains 40-150 ppm amylene as stabilizer
Sigma-Aldrich
Acetona, ACS reagent, ≥99.5%
Sigma-Aldrich
Piperidine, ReagentPlus®, 99%
Sigma-Aldrich
Acetona, histological grade, ≥99.5%
USP
Acetona, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
HBTU, ≥98.0% (T)
Sigma-Aldrich
Piperidine, ≥99.5%, purified by redistillation
Sigma-Aldrich
Diclorometano, ACS reagent, ≥99.5%, contains 40-150 ppm amylene as stabilizer
Supelco
Diclorometano, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Acetona, natural, ≥97%
Supelco
Acetona, analytical standard
Sigma-Aldrich
Piperidine, biotech. grade, ≥99.5%
Supelco
Acetona, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
(Benzotriazol-1-yloxy)tripyrrolidinophosphonium hexafluorophosphate, 98%
Sigma-Aldrich
Acetona, ≥99%, meets FCC analytical specifications
Sigma-Aldrich
Diclorometano, biotech. grade, 99.9%, contains 40-150 ppm amylene as stabilizer
Supelco
Diclorometano, analytical standard
Sigma-Aldrich
Piperidine solution, suitable for peptide synthesis, 20% in DMF
Supelco
Diclorometano, Selectophore, ≥99.5%
Supelco
Piperidine, analytical standard
Sigma-Aldrich
(Benzotriazol-1-yloxy)tripyrrolidinophosphonium hexafluorophosphate, purum, ≥97.0% (TLC)