Saltar al contenido
Merck
  • Flagellin-dependent and -independent inflammatory responses following infection by enteropathogenic Escherichia coli and Citrobacter rodentium.

Flagellin-dependent and -independent inflammatory responses following infection by enteropathogenic Escherichia coli and Citrobacter rodentium.

Infection and immunity (2008-01-30)
Mohammed A Khan, Saeid Bouzari, Caixia Ma, Carrie M Rosenberger, Kirk S B Bergstrom, Deanna L Gibson, Theodore S Steiner, Bruce A Vallance
RESUMEN

Enteropathogenic Escherichia coli (EPEC) and the murine pathogen Citrobacter rodentium belong to the attaching and effacing (A/E) family of bacterial pathogens. These noninvasive bacteria infect intestinal enterocytes using a type 3 secretion system (T3SS), leading to diarrheal disease and intestinal inflammation. While flagellin, the secreted product of the EPEC fliC gene, causes the release of interleukin 8 (IL-8) from epithelial cells, it is unclear whether A/E bacteria also trigger epithelial inflammatory responses that are FliC independent. The aims of this study were to characterize the FliC dependence or independence of epithelial inflammatory responses to direct infection by EPEC or C. rodentium. Following infection of Caco-2 intestinal epithelial cells by wild-type and DeltafliC EPEC, a rapid activation of several proinflammatory genes, including those encoding IL-8, monocyte chemoattractant protein 1, macrophage inflammatory protein 3alpha (MIP3alpha), and beta-defensin 2, occurred in a FliC-dependent manner. These responses were accompanied by mitogen-activated protein kinase activation, as well as the Toll-like receptor 5 (TLR5)-dependent activation of NF-kappaB. At later infection time points, a subset of these proinflammatory genes (IL-8 and MIP3alpha) was also induced in cells infected with DeltafliC EPEC. The nonmotile A/E pathogen C. rodentium also triggered similar innate responses through a TLR5-independent but partially NF-kappaB-dependent mechanism. Moreover, the EPEC FliC-independent responses were increased in the absence of the locus of enterocyte effacement-encoded T3SS, suggesting that translocated bacterial effectors suppress rather than cause the FliC-independent inflammatory response. Thus, we demonstrate that infection of intestinal epithelial cells by A/E pathogens can trigger an array of proinflammatory responses from epithelial cells through both FliC-dependent and -independent pathways, expanding our understanding of the innate epithelial response to infection by these pathogens.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Suero fetal bovino, non-USA origin, sterile-filtered, suitable for cell culture
Sigma-Aldrich
Suero fetal bovino, USA origin, Heat Inactivated, sterile-filtered, suitable for cell culture, suitable for insect cell culture, suitable for hybridoma
Sigma-Aldrich
Suero fetal bovino, USA origin, sterile-filtered, suitable for cell culture, suitable for hybridoma
Sigma-Aldrich
Suero fetal bovino, Heat Inactivated, non-USA origin, sterile-filtered, suitable for cell culture
Sigma-Aldrich
Sal equilibrada de Hanks solution, Modified, with sodium bicarbonate, without phenol red, calcium chloride and magnesium sulfate, liquid, sterile-filtered, suitable for cell culture
Sigma-Aldrich
Sal equilibrada de Hanks solution, Modified, with sodium bicarbonate, without phenol red, liquid, sterile-filtered, suitable for cell culture
Sigma-Aldrich
Sal equilibrada de Hanks solution, Modified, with sodium bicarbonate, without calcium chloride and magnesium sulfate, liquid, sterile-filtered, suitable for cell culture
Sigma-Aldrich
Suero fetal bovino, USA origin, suitable for cell culture
Sigma-Aldrich
Suero fetal bovino, USA origin, Charcoal Stripped, sterile-filtered, suitable for cell culture
Sigma-Aldrich
Sal equilibrada de Hanks solution, With sodium bicarbonate, liquid, sterile-filtered, suitable for cell culture
SAFC
Sal equilibrada de Hanks solution, HBSS Modified, with calcium, with magnesium, without phenol red, liquid, suitable for cell culture
Sigma-Aldrich
Suero fetal bovino, Australia origin, USDA approved, sterile-filtered, suitable for cell culture
Sigma-Aldrich
Suero fetal bovino, USA origin, Heat Inactivated, sterile-filtered, suitable for cell culture
Sigma-Aldrich
Suero fetal bovino, USA origin, γ-irradiated by SER-TAIN process, sterile-filtered, suitable for cell culture
Sigma-Aldrich
Suero fetal bovino, Australia origin, γ-irradiated, sterile-filtered, suitable for cell culture
Sigma-Aldrich
Suero fetal bovino, USA origin, Dialyzed by ultrafiltration against 0.15 M NaCl, sterile-filtered, suitable for cell culture
SAFC
Sal equilibrada de Hanks solution, HBSS Modified, with phenol red, without calcium, without magnesium, liquid
Sigma-Aldrich
Suero fetal bovino, Australia origin, suitable for, USDA approved, sterile-filtered, suitable for cell culture, suitable for hybridoma
Sigma-Aldrich
Sal equilibrada de Hanks solution, 10 ×, Modified, without calcium, magnesium or sodium bicarbonate
Sigma-Aldrich
Suero fetal bovino, Australia origin, USDA approved, Heat Inactivated, suitable for cell culture
SAFC
Suero fetal bovino, Australia origin, γ-irradiated, suitable for cell culture, suitable for hybridoma