Saltar al contenido
Merck

Bi-allelic variants in RNF170 are associated with hereditary spastic paraplegia.

Nature communications (2019-10-23)
Matias Wagner, Daniel P S Osborn, Ina Gehweiler, Maike Nagel, Ulrike Ulmer, Somayeh Bakhtiari, Rim Amouri, Reza Boostani, Faycal Hentati, Maryam M Hockley, Benedikt Hölbling, Thomas Schwarzmayr, Ehsan Ghayoor Karimiani, Christoph Kernstock, Reza Maroofian, Wolfgang Müller-Felber, Ege Ozkan, Sergio Padilla-Lopez, Selina Reich, Jennifer Reichbauer, Hossein Darvish, Neda Shahmohammadibeni, Abbas Tafakhori, Katharina Vill, Stephan Zuchner, Michael C Kruer, Juliane Winkelmann, Yalda Jamshidi, Rebecca Schüle
RESUMEN

Alterations of Ca2+ homeostasis have been implicated in a wide range of neurodegenerative diseases. Ca2+ efflux from the endoplasmic reticulum into the cytoplasm is controlled by binding of inositol 1,4,5-trisphosphate to its receptor. Activated inositol 1,4,5-trisphosphate receptors are then rapidly degraded by the endoplasmic reticulum-associated degradation pathway. Mutations in genes encoding the neuronal isoform of the inositol 1,4,5-trisphosphate receptor (ITPR1) and genes involved in inositol 1,4,5-trisphosphate receptor degradation (ERLIN1, ERLIN2) are known to cause hereditary spastic paraplegia (HSP) and cerebellar ataxia. We provide evidence that mutations in the ubiquitin E3 ligase gene RNF170, which targets inositol 1,4,5-trisphosphate receptors for degradation, are the likely cause of autosomal recessive HSP in four unrelated families and functionally evaluate the consequences of mutations in patient fibroblasts, mutant SH-SY5Y cells and by gene knockdown in zebrafish. Our findings highlight inositol 1,4,5-trisphosphate signaling as a candidate key pathway for hereditary spastic paraplegias and cerebellar ataxias and thus prioritize this pathway for therapeutic interventions.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Anti-β-actina monoclonal antibody produced in mouse, clone AC-15, ascites fluid
Sigma-Aldrich
Anti-vinculina monoclonal antibody produced in mouse, clone hVIN-1, ascites fluid
Sigma-Aldrich
Monoclonal Anti-Tubulin, Acetylated antibody produced in mouse, clone 6-11B-1, ascites fluid
Sigma-Aldrich
Bradykinin acetate salt, powder, ≥98% (HPLC)
Sigma-Aldrich
Carbamoylcholine chloride, ≥98% (titration), crystalline
Sigma-Aldrich
Anticuerpo anti-proteína gliofibrilar ácida (GFAP), serum, Chemicon®
Sigma-Aldrich
Anti-RNF170 antibody produced in rabbit, Prestige Antibodies® Powered by Atlas Antibodies, affinity isolated antibody, buffered aqueous glycerol solution