Brain-penetrant, highly potent and selective RIPK1 (RIP1) inhibitor with necroptosis blocking efficacy in vitro and in vivo.
GSK′963 (GSK′963A) is a brain-penetrant, highly potent and selective ATP site-targeting receptor-interacting protein 1 kinase (RIP1; RIPK1) inhibitor (IC50 = 0.8-8 nM with 50 μM ATP; IC50 >10 μM against RIPK2/3/5 and 335 other kinases) that protects against TNFα/zVAD-induced necroptosis (EC50 = 1/4 nM in mouse L929/human U937 cultures) and blocks Y. pestis-induced death of murine fetal liver macrophages (1 μM). GSK′963 prevents lethal hypothermia by acute sterile shock (2 mg/kg i.p. 15 min prior to TNFα/zVAD i.v.) and protects against acute neuronal death upon autologous blood intracerebral hemorrhage induction in mice in vivo (25 mg/kg/3 hr i.p.).
Herpes simplex virus (HSV)-1 and HSV-2 are significant human pathogens causing recurrent disease. During infection, HSV modulates cell death pathways using the large subunit (R1) of ribonucleotide reductase (RR) to suppress apoptosis by binding to and blocking caspase-8. Here, we demonstrate
Recent studies using cultured cells and rodent intracerebral hemorrhage (ICH) models have implicated RIPK1 (receptor interacting protein kinase-1) as a driver of programmed necrosis and secondary injury based on use of chemical inhibitors. However, these inhibitors have off-target effects and
Receptor-interacting protein kinases 1 and 3 (RIPK1/3) have best been described for their role in mediating a regulated form of necrosis, referred to as necroptosis. During this process, RIPK3 phosphorylates mixed lineage kinase domain-like (MLKL) to cause plasma membrane rupture.
Journal of immunology (Baltimore, Md. : 1950), 196(12), 5056-5063 (2016-05-18)
Leishmaniasis is an important parasitic disease found in the tropics and subtropics. Cutaneous and visceral leishmaniasis affect an estimated 1.5 million people worldwide. Despite its human health relevance, relatively little is known about the cell death pathways that control Leishmania
Proteasome inhibitors have achieved clinical success because they trigger intrinsic and extrinsic cell death to eliminate susceptible human cancers. The ubiquitin-proteasome protein degradation system regulates signaling pathways by controlling levels of components such as cellular inhibitor of apoptosis (cIAP)1 and
Nuestro equipo de científicos tiene experiencia en todas las áreas de investigación: Ciencias de la vida, Ciencia de los materiales, Síntesis química, Cromatografía, Analítica y muchas otras.