Direkt zum Inhalt
Merck
  • Imprinted nanospheres based on precipitation polymerization for the simultaneous extraction of six urinary benzene metabolites from urine followed by injector port silylation and gas chromatography-tandem mass spectrometric analysis.

Imprinted nanospheres based on precipitation polymerization for the simultaneous extraction of six urinary benzene metabolites from urine followed by injector port silylation and gas chromatography-tandem mass spectrometric analysis.

Journal of chromatography. B, Analytical technologies in the biomedical and life sciences (2015-08-11)
Abhishek Chauhan, Tejasvi Bhatia, Manoj Kumar Gupta, Pathya Pandey, Vivek Pandey, Prem Narain Saxena, Mohana Krishna Reddy Mudiam
ZUSAMMENFASSUNG

In the present communication, uniformly sized molecularly imprinted polymer (MIP) as nanospheres were synthesized based on precipitation polymerization using dual-template imprinting approach and used it as sorbent for solid phase extraction of six urinary benzene metabolites (UBMs). This approach in combination with injector port silylation (IPS) has been used for the quantitative determination of these UBMs by gas chromatography-tandem mass spectrometry. The MIP was synthesized by using t,t-muconic acid (t,t-MA) and 1,2,4-trihydroxybenzene (THB) as templates, methacrylic acid (MAA) as a monomer, ethyleneglycoldimethacrylate (EGDMA) as crosslinker, acetonitrile and dimethylsulphoxide as a porogen and azobisisobutyronitrile (AIBN) as an initiator. The factors affecting the performance of polymer and IPS were investigated and optimized for the simultaneous determination of UBMs in urine. Binding study of imprinted and non-imprinted polymer (NIP) shows that, MIP possesses higher affinity in comparison to NIP for these analytes. Under the optimum conditions, the method developed was found to be linear with regression coefficients falls in the range of 0.9721-0.9988 for all the analyzed metabolites. The percent recovery of the metabolites analyzed in urine was found to be in the range of 76-89%, while the limit of detection and limit of quantification were found to be in the range of 0.9-9.1ngmL(-1) and 2.8-27ngmL(-1) respectively. The validated method was successfully applied to the real urine samples collected from different groups (kitchen workers, smokers and petroleum workers) and found that the developed method has been promising applications in the routine analysis of urine samples of benzene exposed population.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Dimethylsulfoxid, Hybri-Max, sterile-filtered, BioReagent, suitable for hybridoma, ≥99.7%
Sigma-Aldrich
Dimethylsulfoxid, for molecular biology
Sigma-Aldrich
Dimethylsulfoxid, sterile-filtered, BioPerformance Certified, meets EP, USP testing specifications, suitable for hybridoma
Sigma-Aldrich
Dimethylsulfoxid, ≥99.5% (GC), suitable for plant cell culture
Sigma-Aldrich
Acrylamid, suitable for electrophoresis, ≥99%
Sigma-Aldrich
2,2′-Azobis(2-Methylpropionitril), 98%
Supelco
N,O-Bis-(trimethylsilyl)-trifluoracetamid mit Trimethylchlorsilan, with 1% trimethylchlorosilane, for GC derivatization, LiChropur
Sigma-Aldrich
Chlorotrimethylsilan, ≥98.0% (GC)
Sigma-Aldrich
Divinylbenzol, technical grade, 80%
Sigma-Aldrich
Ethylenglykoldimethacrylat, 98%, contains 90-110 ppm monomethyl ether hydroquinone as inhibitor
Sigma-Aldrich
Methacrylsäure, contains 250 ppm MEHQ as inhibitor, 99%
Sigma-Aldrich
Chlorotrimethylsilan, purified by redistillation, ≥99%
Sigma-Aldrich
Acrylamid, for molecular biology, ≥99% (HPLC)
Sigma-Aldrich
Dimethylsulfoxid, BioUltra, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
N,O-Bis(trimethylsilyl)trifluoracetamid, ≥99%
Sigma-Aldrich
4-Vinylpyridin, contains 100 ppm hydroquinone as inhibitor, 95%
Sigma-Aldrich
Acrylamid, suitable for electrophoresis, ≥99% (HPLC), powder
Sigma-Aldrich
Acrylamid -Lösung, 40%, suitable for electrophoresis, sterile-filtered
Sigma-Aldrich
Dimethylsulfoxid, PCR Reagent
Sigma-Aldrich
Divinylbenzol, technical grade, 55%
Sigma-Aldrich
Dimethylsulfoxid, anhydrous, ≥99.9%
Sigma-Aldrich
Hydrochinon, ReagentPlus®, ≥99%
Sigma-Aldrich
Trifluoracetamid, 97%
Sigma-Aldrich
1,2-Dihydroxybenzol, ReagentPlus®, ≥99%
Sigma-Aldrich
Chlorotrimethylsilan, produced by Wacker Chemie AG, Burghausen, Germany, ≥99.0% (GC)
Sigma-Aldrich
Brenzcatechin, ≥99%
Sigma-Aldrich
Hydrochinon, ReagentPlus®, 99%
Sigma-Aldrich
Dimethylsulfoxid, meets EP testing specifications, meets USP testing specifications
Sigma-Aldrich
8-Octanoyloxypyren-1,3,6-Trisulfonsäure Trinatriumsalz, suitable for fluorescence, ≥90% (HPCE)
Sigma-Aldrich
Chlortrimethylsilan -Lösung, 1.0 M in THF