Direkt zum Inhalt
Merck

Time-of-flight accurate mass spectrometry identification of quinoline alkaloids in honey.

Analytical and bioanalytical chemistry (2015-06-05)
Tamara Rodríguez-Cabo, Mohammed Moniruzzaman, Isaac Rodríguez, María Ramil, Rafael Cela, Siew Hua Gan
ZUSAMMENFASSUNG

Time-of-flight accurate mass spectrometry (TOF-MS), following a previous chromatographic (gas or liquid chromatography) separation step, is applied to the identification and structural elucidation of quinoline-like alkaloids in honey. Both electron ionization (EI) MS and positive electrospray (ESI+) MS spectra afforded the molecular ions (M(.+) and M+H(+), respectively) of target compounds with mass errors below 5 mDa. Scan EI-MS and product ion scan ESI-MS/MS spectra permitted confirmation of the existence of a quinoline ring in the structures of the candidate compounds. Also, the observed fragmentation patterns were useful to discriminate between quinoline derivatives having the same empirical formula but different functionalities, such as aldoximes and amides. In the particular case of phenylquinolines, ESI-MS/MS spectra provided valuable clues regarding the position of the phenyl moiety attached to the quinoline ring. The aforementioned spectral information, combined with retention times matching, led to the identification of quinoline and five quinoline derivatives, substituted at carbon number 4, in honey samples. An isomer of phenyquinoline was also noticed; however, its exact structure could not be established. Liquid-liquid microextraction and gas chromatography (GC) TOF-MS were applied to the screening of the aforementioned compounds in a total of 62 honeys. Species displaying higher occurrence frequencies were 4-quinolinecarbonitrile, 4-quinolinecarboxaldehyde, 4-quinolinealdoxime, and the phenylquinoline isomer. The Pearson test revealed strong correlations among the first three compounds.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Acetonitril, anhydrous, 99.8%
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
Ammoniumacetat, for molecular biology, ≥98%
Sigma-Aldrich
Ammoniumacetat -Lösung, for molecular biology, 7.5 M
Sigma-Aldrich
Diethylether, contains 1 ppm BHT as inhibitor, anhydrous, ≥99.7%
Sigma-Aldrich
Diethylether
Sigma-Aldrich
Chloroform, anhydrous, ≥99%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Chinolin, reagent grade, 98%
Sigma-Aldrich
Tetrachlorkohlenstoff, anhydrous, ≥99.5%
Sigma-Aldrich
Hydroxylamin -hydrochlorid, 99.999% trace metals basis
Sigma-Aldrich
Ammoniumacetat, 99.999% trace metals basis
Sigma-Aldrich
Chloroform, anhydrous, contains amylenes as stabilizer, ≥99%
Sigma-Aldrich
Ammoniumacetat, reagent grade, ≥98%
Sigma-Aldrich
Phenylmagnesiumchlorid -Lösung, 2.0 M in THF
Sigma-Aldrich
Aceton, natural, ≥97%
Sigma-Aldrich
Hydroxylamin -hydrochlorid, 99.995% trace metals basis
Sigma-Aldrich
2-Chinolincarboxaldehyd, 97%
Sigma-Aldrich
Aceton, ≥99%, meets FCC analytical specifications
Sigma-Aldrich
Acetonitril, electronic grade, 99.999% trace metals basis
Sigma-Aldrich
Chinaldin, ≥95.0% (GC)
Sigma-Aldrich
Chloroform, ≥99%, PCR Reagent, contains amylenes as stabilizer
Sigma-Aldrich
Ammoniumacetat, BioXtra, ≥98%
Sigma-Aldrich
4-Chinolincarbonsäure, 97%
Sigma-Aldrich
2-Phenylchinolin, 99%
Sigma-Aldrich
4-Chinolincarboxaldehyd, 97%
Sigma-Aldrich
Lepidin, 99%
Sigma-Aldrich
4-Chlorchinolin, 99%
Sigma-Aldrich
Methanol, NMR reference standard
Sigma-Aldrich
Aceton, suitable for HPLC, ≥99.9%
Sigma-Aldrich
3-Methylchinolin, 99%