Direkt zum Inhalt
Merck
  • Generation of hydrate forms of paroxetine HCl from the amorphous state: an evaluation of thermodynamic and experimental predictive approaches.

Generation of hydrate forms of paroxetine HCl from the amorphous state: an evaluation of thermodynamic and experimental predictive approaches.

International journal of pharmaceutics (2015-01-17)
M Fátima Pina, João F Pinto, João J Sousa, Duncan Q M Craig, Min Zhao
ZUSAMMENFASSUNG

In this study, we evaluate the use of theoretical thermodynamic analysis of amorphous paroxetine hydrochloride (HCl) as well as experimental assessment in order to identify the most promising approach to stability and dissolution behaviour prediction, particularly in relation to stoichiometric and nonstoichiometric hydrate formation. Differential scanning calorimetry, thermogravimetric analysis, Fourier transform infrared and X-ray diffraction techniques were used. Parameters including heat capacity, configurational thermodynamic quantities, fragility and relaxation time classified amorphous paroxetine HCl as a moderate fragile glass with a considerable degree of molecular mobility. Solubility studies indicated little advantage of the amorphous form over the crystalline due to conversion to the hydrate Form I during equilibration, while the dissolution rate was higher for the amorphous form under sink conditions. A marked difference in the physical stability of amorphous paroxetine HCl was observed between dry and low humidity storage, with the system recrystallizing to the hydrate form. We conclude that, in this particular case (amorphous conversion to the hydrate), water may be playing a dual role in both plasticizing the amorphous form and driving the equilibrium towards the hydrate form, hence prediction of recrystallization behaviour from amorphous characteristics may be confounded by the additional process of hydrate generation.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Natriumchlorid, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
Calciumchlorid -Lösung, BioUltra, for molecular biology, ~1 M in H2O
Sigma-Aldrich
Natriumchlorid -Lösung, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
Natriumchlorid -Lösung, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
Magnesiumnitrat Hexahydrat, ACS reagent, 99%
Sigma-Aldrich
Natriumchlorid, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
Calciumchlorid, anhydrous, BioReagent, suitable for insect cell culture, suitable for plant cell culture, ≥96.0%
Sigma-Aldrich
Natriumchlorid, BioXtra, ≥99.5% (AT)
SAFC
Natriumchlorid -Lösung, 5 M
Sigma-Aldrich
Natriumchlorid -Lösung, BioUltra, for molecular biology, ~5 M in H2O
Sigma-Aldrich
Natriumchlorid, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
Calciumchlorid, anhydrous, powder, 99.99% trace metals basis
Sigma-Aldrich
Natriumchlorid, 99.999% trace metals basis
Sigma-Aldrich
Natriumchlorid -Lösung, 5 M
Sigma-Aldrich
Phosphorpentoxid, ReagentPlus®, 99%
Sigma-Aldrich
Natriumchlorid, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
Sigma-Aldrich
Calciumchlorid, AnhydroBeads, −10 mesh, ≥99.9% trace metals basis
Sigma-Aldrich
Magnesiumnitrat Hexahydrat, 99.999% trace metals basis
Supelco
Natriumchlorid, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Phosphorpentoxid, powder, ACS reagent, ≥98.0%
Supelco
Natriumchlorid, reference material for titrimetry, certified by BAM, >99.5%
Sigma-Aldrich
Natriumchlorid, BioPerformance Certified, ≥99% (titration), suitable for insect cell culture, suitable for plant cell culture
Sigma-Aldrich
Magnesiumnitrat Hexahydrat, BioXtra, ≥98%
Sigma-Aldrich
Natriumchlorid, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
Natriumchlorid-35Cl, 99 atom % 35Cl
Sigma-Aldrich
Calciumchlorid Dihydrat
Sigma-Aldrich
Natriumchlorid -Lösung, 0.85%
Supelco
Calcium Standard für AAS, analytical standard, 1.000 g/L Ca+2 in hydrochloric acid, traceable to BAM
Sigma-Aldrich
Natriumchlorid, random crystals, optical grade, 99.9% trace metals basis
Sigma-Aldrich
Phosphorpentoxid, anhydrous, free-flowing, Redi-Dri, ReagentPlus®, 99%