Direkt zum Inhalt
Merck
  • Long-chain acylcarnitine content determines the pattern of energy metabolism in cardiac mitochondria.

Long-chain acylcarnitine content determines the pattern of energy metabolism in cardiac mitochondria.

Molecular and cellular biochemistry (2014-06-01)
Marina Makrecka, Janis Kuka, Kristine Volska, Unigunde Antone, Eduards Sevostjanovs, Helena Cirule, Solveiga Grinberga, Osvalds Pugovics, Maija Dambrova, Edgars Liepinsh
ZUSAMMENFASSUNG

In the heart, a nutritional state (fed or fasted) is characterized by a unique energy metabolism pattern determined by the availability of substrates. Increased availability of acylcarnitines has been associated with decreased glucose utilization; however, the effects of long-chain acylcarnitines on glucose metabolism have not been previously studied. We tested how changes in long-chain acylcarnitine content regulate the metabolism of glucose and long-chain fatty acids in cardiac mitochondria in fed and fasted states. We examined the concentrations of metabolic intermediates in plasma and cardiac tissues under fed and fasted states. The effects of substrate availability and their competition for energy production at the mitochondrial level were studied in isolated rat cardiac mitochondria. The availability of long-chain acylcarnitines in plasma reflected their content in cardiac tissue in the fed and fasted states, and acylcarnitine content in the heart was fivefold higher in fasted state compared to the fed state. In substrate competition experiments, pyruvate and fatty acid metabolites effectively competed for the energy production pathway; however, only the physiological content of acylcarnitine significantly reduced pyruvate and lactate oxidation in mitochondria. The increased availability of long-chain acylcarnitine significantly reduced glucose utilization in isolated rat heart model and in vivo. Our results demonstrate that changes in long-chain acylcarnitine contents could orchestrate the interplay between the metabolism of pyruvate-lactate and long-chain fatty acids, and thus determine the pattern of energy metabolism in cardiac mitochondria.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Acetonitril, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Methanol, suitable for HPLC, ≥99.9%
Sigma-Aldrich
2-Propanol, suitable for HPLC, 99.9%
Sigma-Aldrich
2-Propanol, ACS reagent, ≥99.5%
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Kaliumchlorid, ACS reagent, 99.0-100.5%
Sigma-Aldrich
Acetonitril, HPLC Plus, ≥99.9%
Sigma-Aldrich
Kaliumphosphat, ACS reagent, ≥99.0%
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%
Sigma-Aldrich
Magnesiumchlorid Hexahydrat, ACS reagent, 99.0-102.0%
Sigma-Aldrich
Calciumchlorid Dihydrat, ACS reagent, ≥99%
Sigma-Aldrich
Ammoniumbicarbonat, ReagentPlus®, ≥99.0%
Sigma-Aldrich
Ammoniumacetat, ACS reagent, ≥97%
Sigma-Aldrich
Acetonitril, ACS reagent, ≥99.5%
Sigma-Aldrich
2-Propanol, HPLC Plus, for HPLC, GC, and residue analysis, 99.9%
Sigma-Aldrich
Imidazol, ReagentPlus®, 99%
Sigma-Aldrich
Natriumchlorid, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
Ammoniumacetat, ≥99.99% trace metals basis
Sigma-Aldrich
Isopropylalkohol, meets USP testing specifications
Sigma-Aldrich
Kaliumphosphat, powder, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99.0%
Sigma-Aldrich
Acetonitril, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
Calciumchlorid Dihydrat, ReagentPlus®, ≥99.0%
Sigma-Aldrich
Kaliumchlorid, puriss., meets analytical specification of Ph. Eur., BP, USP, FCC, E508, 99-100.5% (AT), ≤0.0001% Al
Sigma-Aldrich
Natriumchlorid -Lösung, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
Kaliumchlorid, for molecular biology, ≥99.0%
Sigma-Aldrich
Natriumchlorid, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
Natriumchlorid -Lösung, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
2-Propanol, Laboratory Reagent, ≥99.5%
Sigma-Aldrich
Kaliumchlorid, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, ≥99.0%