95348
Abberior® STAR 470SX, NHS ester
for long Stokes STED and 2-color STED application
Sign Into View Organizational & Contract Pricing
All Photos(1)
About This Item
Recommended Products
Assay
≥80.0% (degree of coupling)
form
solid
solubility
DMF: 1 mg/mL, clear
fluorescence
λex 480 nm; λem 610-630 nm in PBS, pH 7.4
storage temp.
−20°C
General description
Abberior STAR 470SX is the latest development of long-Stokes-Shift dyes for STED microscopy. The dye can be excited from 450 to 480nm. It can substitute dyes like Chromeo™ 494. For STED, a depletion wavelength ~750 nm is recommended. It is therefore well suited for 2-color STED imaging as implemented in the Leica TCS STED Ti:Sa microscope.
Abberior STAR 470SX is the dye of choice for long Stokes STED applications in the orange fluorescent regime. The dye is particularly designed and tested for 2-color STED microscopy in combination with our STAR 635 using a single STED wavelength. The dye is our recommendation for usage in the Leica TCS STED Ti:Sa 2-color system.
Key Features
Absorption Maximum, λmax: 475 nm (MeOH),
477 nm (PBS, pH 7.4)
Extinction Coefficient, ε(λmax): 30′400 M-1cm-1 (MeOH),
22′700 M-1cm-1 (PBS, pH 7.4)
Correction Factor, CF260 = ε260/εmax: 0.69
Correction Factor, CF280 = ε280/max: 0.47
Fluorescence Maximum, λfl: 609 nm (MeOH),
627 nm (PBS, pH 7.4)
Recommended STED Wavelength, λSTED: 740 - 770 nm
Fluorescence Quantum Yield, η: 0.80 (EtOH)
Fluorescence Lifetime, τ: 3.9 (EtOH)
Abberior STAR 470SX is the dye of choice for long Stokes STED applications in the orange fluorescent regime. The dye is particularly designed and tested for 2-color STED microscopy in combination with our STAR 635 using a single STED wavelength. The dye is our recommendation for usage in the Leica TCS STED Ti:Sa 2-color system.
Key Features
- Designed for STED microscopy at ~750 nm
- Long Stokes′ shift (>130 nm) for 2-color applications
- Tested in the Leica TCS STED Ti:Sa 2-color system
Absorption Maximum, λmax: 475 nm (MeOH),
477 nm (PBS, pH 7.4)
Extinction Coefficient, ε(λmax): 30′400 M-1cm-1 (MeOH),
22′700 M-1cm-1 (PBS, pH 7.4)
Correction Factor, CF260 = ε260/εmax: 0.69
Correction Factor, CF280 = ε280/max: 0.47
Fluorescence Maximum, λfl: 609 nm (MeOH),
627 nm (PBS, pH 7.4)
Recommended STED Wavelength, λSTED: 740 - 770 nm
Fluorescence Quantum Yield, η: 0.80 (EtOH)
Fluorescence Lifetime, τ: 3.9 (EtOH)
Application
Abberior™ STAR 470SX goat anti-rabbit antibody has been used for STED (stimulated emission depletion) microscopy in Caco-2 cells.
Suitability
Designed and tested for fluorescent super-resolution microscopy
Other Notes
Legal Information
6538 is a trademark of American Type Culture Collection
Chromeo is a trademark of Active Motif Chromeon GmbH
abberior is a registered trademark of Abberior GmbH
related product
Storage Class Code
11 - Combustible Solids
WGK
WGK 3
Flash Point(F)
Not applicable
Flash Point(C)
Not applicable
Certificates of Analysis (COA)
Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
PLoS pathogens, 8(10), e1002953-e1002953 (2012-10-17)
Quorum sensing (QS) signaling allows bacteria to control gene expression once a critical population density is achieved. The Gram-negative human pathogen Pseudomonas aeruginosa uses N-acylhomoserine lactones (AHL) as QS signals, which coordinate the production of virulence factors and biofilms. These
Nature biotechnology, 21(11), 1303-1304 (2003-10-21)
We report immunofluorescence imaging with a spatial resolution well beyond the diffraction limit. An axial resolution of approximately 50 nm, corresponding to 1/16 of the irradiation wavelength of 793 nm, is achieved by stimulated emission depletion through opposing lenses. We
Optics letters, 24(14), 954-956 (2007-12-13)
We overcame the resolution limit of scanning far-field fluorescence microscopy by disabling the fluorescence from the outer part of the focal spot. Whereas a near-UV pulse generates a diffraction-limited distribution of excited molecules, a spatially offset pulse quenches the excited
Physical review letters, 94(14), 143903-143903 (2005-05-21)
Utilizing single fluorescent molecules as probes, we prove the ability of a far-field microscope to attain spatial resolution down to 16 nm in the focal plane, corresponding to about 1/50 of the employed wavelength. The optical bandwidth expansion by nearly
Beitraege zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung.
Archiv fur Mikroskopische Anatomie, 9, 413-420 (1873)
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service