Přejít k obsahu
Merck
  • The Parkinson's disease-associated genes ATP13A2 and SYT11 regulate autophagy via a common pathway.

The Parkinson's disease-associated genes ATP13A2 and SYT11 regulate autophagy via a common pathway.

Nature communications (2016-06-10)
Carla F Bento, Avraham Ashkenazi, Maria Jimenez-Sanchez, David C Rubinsztein
ANOTACE

Forms of Parkinson's disease (PD) are associated with lysosomal and autophagic dysfunction. ATP13A2, which is mutated in some types of early-onset Parkinsonism, has been suggested as a regulator of the autophagy-lysosome pathway. However, little is known about the ATP13A2 effectors and how they regulate this pathway. Here we show that ATP13A2 depletion negatively regulates another PD-associated gene (SYT11) at both transcriptional and post-translational levels. Decreased SYT11 transcription is controlled by a mechanism dependent on MYCBP2-induced ubiquitination of TSC2, which leads to mTORC1 activation and decreased TFEB-mediated transcription of SYT11, while increased protein turnover is regulated by SYT11 ubiquitination and degradation. Both mechanisms account for a decrease in the levels of SYT11, which, in turn, induces lysosomal dysfunction and impaired degradation of autophagosomes. Thus, we propose that ATP13A2 and SYT11 form a new functional network in the regulation of the autophagy-lysosome pathway, which is likely to contribute to forms of PD-associated neurodegeneration.

MATERIÁLY
Číslo produktu
Značka
Popis produktu

Sigma-Aldrich
Monoclonal ANTI-FLAG® M2 antibody produced in mouse, clone M2, purified immunoglobulin (Purified IgG1 subclass), buffered aqueous solution (10 mM sodium phosphate, 150 mM NaCl, pH 7.4, containing 0.02% sodium azide)
Sigma-Aldrich
Anti-Actin antibody produced in rabbit, affinity isolated antibody, buffered aqueous solution
Sigma-Aldrich
Anti-ZNF306 antibody produced in rabbit, affinity isolated antibody