Přejít k obsahu
Merck

Fructose, weight gain, and the insulin resistance syndrome.

The American journal of clinical nutrition (2002-10-26)
Sharon S Elliott, Nancy L Keim, Judith S Stern, Karen Teff, Peter J Havel
ANOTACE

This review explores whether fructose consumption might be a contributing factor to the development of obesity and the accompanying metabolic abnormalities observed in the insulin resistance syndrome. The per capita disappearance data for fructose from the combined consumption of sucrose and high-fructose corn syrup have increased by 26%, from 64 g/d in 1970 to 81 g/d in 1997. Both plasma insulin and leptin act in the central nervous system in the long-term regulation of energy homeostasis. Because fructose does not stimulate insulin secretion from pancreatic beta cells, the consumption of foods and beverages containing fructose produces smaller postprandial insulin excursions than does consumption of glucose-containing carbohydrate. Because leptin production is regulated by insulin responses to meals, fructose consumption also reduces circulating leptin concentrations. The combined effects of lowered circulating leptin and insulin in individuals who consume diets that are high in dietary fructose could therefore increase the likelihood of weight gain and its associated metabolic sequelae. In addition, fructose, compared with glucose, is preferentially metabolized to lipid in the liver. Fructose consumption induces insulin resistance, impaired glucose tolerance, hyperinsulinemia, hypertriacylglycerolemia, and hypertension in animal models. The data in humans are less clear. Although there are existing data on the metabolic and endocrine effects of dietary fructose that suggest that increased consumption of fructose may be detrimental in terms of body weight and adiposity and the metabolic indexes associated with the insulin resistance syndrome, much more research is needed to fully understand the metabolic effect of dietary fructose in humans.

MATERIÁLY
Číslo produktu
Značka
Popis produktu

Sigma-Aldrich
D-(−)-Fructose, tested according to Ph. Eur.