Přejít k obsahu
Merck

CCVJ is not a simple rotor probe.

The journal of physical chemistry. A (2012-10-27)
Christopher Rumble, Kacie Rich, Gang He, Mark Maroncelli
ANOTACE

The photochemistry of the rotor probe 9-(2-carboxy-2-cyanovinyl)julolidine (CCVJ) was studied to elucidate a curious effect of fluid flow previously reported. The apparent sensitivity to fluid motion observed in CCVJ but not in the closely related molecule 9-(dicyanovinyl)julolidine (DCVJ) is found to be an indirect effect of a photoisomerization reaction. The results presented here demonstrate that it is this isomerization, rather than the commonly assumed TICT process, that confers viscosity-sensing ability on these fluorophores. In micromolar solutions in hydroxylic solvents CCVJ exists primarily in the carboxylate form. Only the E isomer of this anion is initially present in solutions prepared from the solid, but in room light such solutions rapidly achieve a photostationary state in which the E isomer and an essentially nonfluorescent Z isomer exist in comparable concentrations. The Z isomer is metastable in S(0) such that in the absence of light the solution reverts slowly to pure E. Unlike DCVJ where only a single isomer is possible, the production of long-lived photoproducts in CCVJ and other asymmetrically substituted styryenyl probes complicates their fluorescence response. Considerable care is needed when such fluorphores are used as steady-state sensors of environmental fluidity are used.

MATERIÁLY
Číslo produktu
Značka
Popis produktu

Sigma-Aldrich
9-(2-Carboxy-2-cyanovinyl)julolidine, BioReagent, suitable for fluorescence, ≥97.0% (HPLC)