Přejít k obsahu
Merck
  • KRAS interaction with RAF1 RAS-binding domain and cysteine-rich domain provides insights into RAS-mediated RAF activation.

KRAS interaction with RAF1 RAS-binding domain and cysteine-rich domain provides insights into RAS-mediated RAF activation.

Nature communications (2021-02-21)
Timothy H Tran, Albert H Chan, Lucy C Young, Lakshman Bindu, Chris Neale, Simon Messing, Srisathiyanarayanan Dharmaiah, Troy Taylor, John-Paul Denson, Dominic Esposito, Dwight V Nissley, Andrew G Stephen, Frank McCormick, Dhirendra K Simanshu
ANOTACE

The first step of RAF activation involves binding to active RAS, resulting in the recruitment of RAF to the plasma membrane. To understand the molecular details of RAS-RAF interaction, we present crystal structures of wild-type and oncogenic mutants of KRAS complexed with the RAS-binding domain (RBD) and the membrane-interacting cysteine-rich domain (CRD) from the N-terminal regulatory region of RAF1. Our structures reveal that RBD and CRD interact with each other to form one structural entity in which both RBD and CRD interact extensively with KRAS. Mutations at the KRAS-CRD interface result in a significant reduction in RAF1 activation despite only a modest decrease in binding affinity. Combining our structures and published data, we provide a model of RAS-RAF complexation at the membrane, and molecular insights into RAS-RAF interaction during the process of RAS-mediated RAF activation.

MATERIÁLY
Číslo produktu
Značka
Popis produktu

Millipore
ANTI-FLAG® antibody produced in rabbit, affinity isolated antibody, buffered aqueous solution
Sigma-Aldrich
Raf-1 RBD Protein, GST, 300 µg, GST fusion-protein, corresponding to the human Ras Binding Domain (RBD, residues 1-149) of Raf-1, expressed in E. coli. with purity 50% at full length molecular weight 42 kDa. For use in Affinity Binding Assays