Přejít k obsahu
Merck

Protein kinase C delta regulates airway mucin secretion via phosphorylation of MARCKS protein.

The American journal of pathology (2007-12-07)
Jin-Ah Park, Anne L Crews, William R Lampe, Shijing Fang, Joungjoa Park, Kenneth B Adler
ANOTACE

Mucin hypersecretion is a major pathological feature of many respiratory diseases, yet cellular mechanisms regulating secretion of mucin have not been fully elucidated. Previously, we reported that mucin hypersecretion induced by human neutrophil elastase involves activation of protein kinase C (PKC), specifically the delta-isoform (PKC delta). Here, we further investigated the role of PKC delta in mucin hypersecretion using both primary human bronchial epithelial cells and the human bronchial epithelial 1 cell line as in vitro model systems. Phorbol-12-myristate-13-acetate (PMA)-induced mucin hypersecretion was significantly attenuated by rottlerin, a PKC delta-selective inhibitor. Rottlerin also reduced PMA- or human neutrophil elastase-induced phosphorylation of myristoylated alanine-rich C kinase substrate (MARCKS) protein in these cells. Both secretion and MARCKS phosphorylation were significantly enhanced by the PKC delta activator bryostatin 1. A dominant-negative PKC delta construct (pEGFP-N1/PKC delta K376R) transfected into human bronchial epithelial 1 cells significantly attenuated both PMA-induced mucin secretion and phosphorylation of MARCKS, whereas transfection of a wild-type construct increased PKC delta and enhanced mucin secretion and MARCKS phosphorylation. Similar transfections of a dominant-negative or wild-type PKC epsilon construct did not affect either mucin secretion or MARCKS phosphorylation. The results suggest that PKC delta plays an important role in mucin secretion by airway epithelium via regulation of MARCKS phosphorylation.

MATERIÁLY
Číslo produktu
Značka
Popis produktu

Sigma-Aldrich
Anti-MARCKS Antibody, clone 2F12, ascites fluid, clone 2F12, Upstate®