Přejít k obsahu
Merck
  • Characterization of the Interaction between Arginine Methyltransferase Hmt1 and Its Substrate Npl3: Use of Multiple Cross-Linkers, Mass Spectrometric Approaches, and Software Platforms.

Characterization of the Interaction between Arginine Methyltransferase Hmt1 and Its Substrate Npl3: Use of Multiple Cross-Linkers, Mass Spectrometric Approaches, and Software Platforms.

Analytical chemistry (2018-07-14)
Daniela-Lee Smith, Michael Götze, Tara K Bartolec, Gene Hart-Smith, Marc R Wilkins
ANOTACE

This study investigated the enzyme-substrate interaction between Saccharomyces cerevisiae arginine methyltransferase Hmt1p and nucleolar protein Npl3p, using chemical cross linking/mass spectrometry (XL/MS). We show that XL/MS can capture transient interprotein interactions that occur during the process of methylation, involving a disordered region in Npl3p with tandem SRGG repeats, and we confirm that Hmt1p and Npl3p exist as homomultimers. Additionally, the study investigated the interdependencies between variables of an XL/MS experiment that lead to the identification of identical or different cross-linked peptides. We report that there are substantial benefits, in terms of biologically relevant cross-links identified, that result from the use of two mass-spectrometry-cleavable cross-linkers [disuccinimido sulfoxide (DSSO) and disuccinimido dibutyric urea (DSBU)], two fragmentation approaches [collision-induced dissociation and electron-transfer dissociation (CID+ETD)] and stepped high-energy collision dissociation (HCD)], and two programs (MeroX and XlinkX). We also show that there are specific combinations of XL/MS methods that are more successful than others for the two proteins investigated here; these are explored in detail in the text. Data are available via ProteomeXchange with identifier PXD008348.