Přejít k obsahu
Merck

Micron-Size Two-Dimensional Methylammonium Lead Halide Perovskites.

ACS nano (2019-06-12)
Eugen Klein, Andres Black, Öznur Tokmak, Christian Strelow, Rostyslav Lesyuk, Christian Klinke
ANOTACE

Hybrid lead halide perovskites with 2D stacking structures have recently emerged as promising materials for optoelectronic applications. We report a method for growing 2D nanosheets of hybrid lead halide perovskites (I, Br and Cl), with tunable lateral sizes ranging from 0.05 to 8 μm and a structure consisting of n stacked monolayers separated by long alkylamines, tunable from bulk down to n = 1. The key to obtaining such a wide range of perovskite properties hinged on utilizing the respective lead halide nanosheets as precursors in a hot-injection synthesis that afforded careful control over all process parameters. The layered, quantum-confined ( n ≤ 4) nanosheets were comprised of major and minor fractions with differing n. Energy funneling from low to high n (high to low energy) regions within a single sheet, mediated by the length of the ligands between stacks, produced photoluminescent quantum yields as high as 49%. These large, tunable 2D nanosheets could serve as convenient platforms for future high-efficiency optoelectronic devices.