Přejít k obsahu
Merck
  • The inhibitory role of purinergic P2Y receptor on Mg2+ transport across intestinal epithelium-like Caco-2 monolayer.

The inhibitory role of purinergic P2Y receptor on Mg2+ transport across intestinal epithelium-like Caco-2 monolayer.

The journal of physiological sciences : JPS (2018-07-23)
Narongrit Thongon, Siriporn Chamniansawat
ANOTACE

The mechanism of proton pump inhibitors (PPIs) suppressing intestinal Mg2+ uptake is unknown. The present study aimed to investigate the role of purinergic P2Y receptors in the regulation of Mg2+ absorption in normal and omeprazole-treated intestinal epithelium-like Caco-2 monolayers. Omeprazole suppressed Mg2+ transport across Caco-2 monolayers. An agonist of the P2Y2 receptor, but not the P2Y4 or P2Y6 receptor, suppressed Mg2+ transport across control and omeprazole-treated monolayers. Omeprazole enhanced P2Y2 receptor expression in Caco-2 cells. Forskolin and P2Y2 receptor agonist markedly enhanced apical HCO3- secretion by control and omeprazole-treated monolayers. The P2Y2 receptor agonist suppressed Mg2+ transport and stimulated apical HCO3- secretion through the Gq-protein coupled-phospholipase C (PLC) dependent pathway. Antagonists of cystic fibrosis transmembrane conductance regulator (CFTR) and Na+-HCO3- cotransporter-1 (NBCe1) could nullify the inhibitory effect of P2Y2 receptor agonist on Mg2+ transport across control and omeprazole-treated Caco-2 monolayers. Our results propose an inhibitory role of P2Y2 on intestinal Mg2+ absorption.