156353
6-Chloropyridine-3-carboxylic acid
99%
Synonym(s):
6-Chloronicotinic acid
Sign Into View Organizational & Contract Pricing
All Photos(4)
About This Item
Recommended Products
Assay
99%
mp
190 °C (dec.) (lit.)
solubility
deionized water: soluble
functional group
carboxylic acid
SMILES string
OC(=O)c1ccc(Cl)nc1
InChI
1S/C6H4ClNO2/c7-5-2-1-4(3-8-5)6(9)10/h1-3H,(H,9,10)
InChI key
UAWMVMPAYRWUFX-UHFFFAOYSA-N
Looking for similar products? Visit Product Comparison Guide
Application
6-Chloropyridine-3-carboxylic acid (6-chloronicotinic acid/6-CNA) has been used to study its photolytic and photocatalytic degradation. 6-CNA is a degradation product of neonicotinoid insecticides imidacloprid and acetamiprid and is known to appear in different environmental matrices. The product has been used as a media component during the isolation of 6-CNA degrading bacterial strain from imidacloprid-exposed soil samples.
Signal Word
Warning
Hazard Statements
Precautionary Statements
Hazard Classifications
Eye Irrit. 2 - Skin Irrit. 2 - STOT SE 3
Target Organs
Respiratory system
Storage Class Code
11 - Combustible Solids
WGK
WGK 3
Flash Point(F)
Not applicable
Flash Point(C)
Not applicable
Personal Protective Equipment
dust mask type N95 (US), Eyeshields, Gloves
Choose from one of the most recent versions:
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
Customers Also Viewed
Journal of agricultural and food chemistry, 63(19), 4721-4727 (2015-05-02)
Thus far, only a small number and types of bacteria with limited ability in degrading imidacloprid have been reported. Also, genes regulating imidacloprid (IMDA) degradation have yet to be discovered. To study this in more detail, an enrichment technique was
Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy, 71(3), 876-883 (2008-03-25)
The experimental and theoretical study on the structures and vibrations of 6-chloronicotinic acid (6-CNA, C(6)H(4)ClNO(2)) are presented. The Fourier transform infrared spectra (4,000-50 cm(-1)) and the Fourier transform Raman spectra (3,500-50 cm(-1)) of the title molecule in solid phase have
Journal of chromatography. A, 1003(1-2), 189-195 (2003-08-06)
A method is described for the analysis of the insecticide imidacloprid [1-(6-chloro-3-pyridylmethyl)-N-nitroimidazolidin-2-ylideneamine] and its metabolite 6-chloronicotinic acid by micellar electrokinetic chromatography with diode-array detection at 270 and 227 nm, respectively. The best results were obtained using sodium dodecyl sulphate at
Electrophoresis, 33(19-20), 2969-2977 (2012-09-22)
A sensitive and reliable method based on MEKC has been developed and validated for trace determination of neonicotinoid insecticides (thiamethoxam, acetamiprid, and imidacloprid) and the metabolite 6-chloronicotinic acid in water and soil matrices. Optimum separation of the neonicotinoid insecticides was
Journal of environmental science and health. Part A, Toxic/hazardous substances & environmental engineering, 47(12), 1919-1929 (2012-07-05)
Two spectroscopic methods, (1)H NMR and FTIR, were developed for the monitoring of the photocatalytic degradation of acetamiprid, a widely used pyridine-based neonicotinoid insecticide, in UV-irradiated aqueous suspensions of O(2)/TiO(2). The (1)H NMR method allowed also the identification of the
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service