Saltar al contenido
Merck

Characterising hyperinsulinemia-induced insulin resistance in human skeletal muscle cells.

Journal of molecular endocrinology (2020-01-29)
Mark C Turner, Neil R W Martin, Darren J Player, Richard A Ferguson, Patrick Wheeler, Charlotte J Green, Elizabeth C Akam, Mark P Lewis
RESUMEN

Hyperinsulinaemia potentially contributes to insulin resistance in metabolic tissues, such as skeletal muscle. The purpose of these experiments was to characterise glucose uptake, insulin signalling and relevant gene expression in primary human skeletal muscle-derived cells (HMDCs), in response to prolonged insulin exposure (PIE) as a model of hyperinsulinaemia-induced insulin resistance. Differentiated HMDCs from healthy human donors were cultured with or without insulin (100 nM) for 3 days followed by an acute insulin stimulation. HMDCs exposed to PIE were characterised by impaired insulin-stimulated glucose uptake, blunted IRS-1 phosphorylation (Tyr612) and Akt (Ser473) phosphorylation in response to an acute insulin stimulation. Glucose transporter 1 (GLUT1), but not GLUT4, mRNA and protein increased following PIE. The mRNA expression of metabolic (PDK4) and inflammatory markers (TNF-α) was reduced by PIE but did not change lipid (SREBP1 and CD36) or mitochondrial (UCP3) markers. These experiments provide further characterisation of the effects of PIE as a model of hyperinsulinaemia-induced insulin resistance in HMDCs.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
DL-Glyceraldehyde 3-phosphate solution, 45-55 mg/mL in H2O
Sigma-Aldrich
Anticuerpo anti-GLUT-1, CT., from rabbit, purified by affinity chromatography
Sigma-Aldrich
Anticuerpo anti-fosfoIRS1 (Tyr608) ratón/ (Tyr612) humano, Upstate®, from rabbit
Sigma-Aldrich
Anti-IRS1 Antibody, clone 58-10C-31, rabbit monoclonal, clone 58-10C-31, from rabbit