Saltar al contenido
Merck

544884

Sigma-Aldrich

Iron(III) oxide

nanopowder, <50 nm particle size (BET)

Sinónimos:

Ferric oxide

Iniciar sesiónpara Ver la Fijación de precios por contrato y de la organización


About This Item

Fórmula empírica (notación de Hill):
Fe2O3
Número de CAS:
Peso molecular:
159.69
EC Number:
MDL number:
UNSPSC Code:
12352302
PubChem Substance ID:
NACRES:
NA.23

description

crystalline (primarily γ)

Quality Level

form

nanopowder

surface area

50-245 m2/g

particle size

<50 nm (BET)

application(s)

battery manufacturing

SMILES string

O=[Fe]O[Fe]=O

InChI

1S/2Fe.3O

InChI key

JEIPFZHSYJVQDO-UHFFFAOYSA-N

¿Está buscando productos similares? Visita Guía de comparación de productos

General description

Iron(III) oxide nanopowder is a fine powder with a particle size of less than 50 nm. It is a red or black solid compound made up of iron and oxygen. It is also known as hematite or ferric oxide. It is a naturally occurring mineral that can also be synthesized in the laboratory. Iron(III) oxide has a number of useful physical properties. It has a high refractive index and is opaque, making it useful as a pigment in paints in inks. Iron(III) oxide is also catalytically active and weakly ferromagnetic at room temperature.

Application

Iron(III) oxide nanopowder has a number of uses due to its magnetic and catalytic properties. It is used in the production of magnetic recording media such as magnetic tapes and disks. It is also used as a catalyst in the production of chemicals, including the production of gasoline and plastics and in environmental remediation.

Features and Benefits

  • High theoretical specific capacity
  • Biocompatibility
  • Ease of coating and modification
  • Non-toxicity

Storage Class

13 - Non Combustible Solids

wgk_germany

nwg

flash_point_f

Not applicable

flash_point_c

Not applicable

ppe

dust mask type N95 (US), Eyeshields, Gloves


Certificados de análisis (COA)

Busque Certificados de análisis (COA) introduciendo el número de lote del producto. Los números de lote se encuentran en la etiqueta del producto después de las palabras «Lot» o «Batch»

¿Ya tiene este producto?

Encuentre la documentación para los productos que ha comprado recientemente en la Biblioteca de documentos.

Visite la Librería de documentos

Junho Han et al.
Scientific reports, 9(1), 6130-6130 (2019-04-18)
Recent developments in analytics using infrared spectroscopy have enabled us to identify the adsorption mechanism at interfaces, but such methods are applicable only for simple systems. In this study, the preferential adsorption of phosphate on binary goethite and maghaemite was
Daniel Matatagui et al.
Sensors (Basel, Switzerland), 19(24) (2019-12-11)
A portable electronic nose based on surface acoustic wave (SAW) sensors is proposed in this work to detect toxic chemicals, which have a great potential to threaten the surrounding natural environment or adversely affect the health of people. We want
Yangyang Yang et al.
Ecotoxicology and environmental safety, 148, 89-96 (2017-10-17)
The behaviors of nanoparticles rely on the aqueous condition such as natural organic matter (NOM). Therefore the presence of NOM would influence the interaction of nanoparticles with other substances possibly. Here, microcystin-LR (MC-LR) adsorption on iron oxide nanoparticles (IONPs) was
Hokuto Fuse et al.
Nanomaterials (Basel, Switzerland), 9(2) (2019-02-06)
Submicrometre spherical particles made of Au and Fe can be fabricated by pulsed-laser melting in liquid (PLML) using a mixture of Au and iron oxide nanoparticles as the raw particles dispersed in ethanol, although the detailed formation mechanism has not
Alice Panariti et al.
Journal of biomedical nanotechnology, 9(9), 1556-1569 (2013-08-29)
Magnetic nanoparticles have emerged as important players in current research in modern medicine since they can be used in medicine for diagnosis and/or therapeutic treatment of diseases. Among many therapeutic applications of iron-based nanoparticles, drug delivery and photothermal therapy are

Artículos

Innovation in dental restorative materials is driven by the need for biocompatible and natural-appearing restoration alternatives. Conventional dental materials like amalgam and composite resins have inherent disadvantages.

Magnetic nanoparticles have attracted tremendous attention due to their novel properties and their potential applications in magnetic recording, magnetic energy storage and biomedicine.

Graphene is a unique two-dimensional (2D) structure of monolayer carbon atoms packed into a dense honeycomb crystal that has attracted great interest due to its diverse and fascinating properties.

Professor Hui Mao explores the use of superparamagnetic iron oxide nanoparticles (INOPs) that offer an alternate contrast-enhancing mechanism.

Ver todo

Nuestro equipo de científicos tiene experiencia en todas las áreas de investigación: Ciencias de la vida, Ciencia de los materiales, Síntesis química, Cromatografía, Analítica y muchas otras.

Póngase en contacto con el Servicio técnico