Saltar al contenido
Merck

206229

Sigma-Aldrich

Ruthenium(III) chloride hydrate

ReagentPlus®

Sinónimos:

Ruthenium trichloride

Iniciar sesiónpara Ver la Fijación de precios por contrato y de la organización


About This Item

Fórmula lineal:
RuCl3 · xH2O
Número de CAS:
Peso molecular:
207.43 (anhydrous basis)
EC Number:
MDL number:
UNSPSC Code:
12352302
PubChem Substance ID:
NACRES:
NA.23

Quality Level

product line

ReagentPlus®

form

powder and chunks

composition

Degree of hydration, ≤1
Ruthenium content, 40.00-49.00%

reaction suitability

reagent type: catalyst
core: ruthenium

impurities

≤0.1% Insoluble matter (C=1%, 25% HCl)

SMILES string

O.Cl[Ru](Cl)Cl

InChI

1S/3ClH.H2O.Ru/h3*1H;1H2;/q;;;;+3/p-3

InChI key

BIXNGBXQRRXPLM-UHFFFAOYSA-K

¿Está buscando productos similares? Visita Guía de comparación de productos

General description

Ruthenium(III) chloride hydrate ReagentPlus® is a versatile and valuable compound in various scientific and industrial applications, particularly due to its catalytic properties and role in material science. Its ability to participate in numerous chemical reactions and processes makes it an essential reagent in both research and practical applications. It comes with black or grey color with insoluble matter ≤ 0.1 %; and % Ruthenium after reduction with Magnesium is 40.00 - 49.00 %.

Application

Ruthenium(III) chloride hydrate (RuCl·xHO) is a versatile compound with several applications across different fields. It can be used as a catalyst hydrogeneation, oxidation reachtions. For example, one of the study has found it as an efficient catalyst for the selective oxidation of fatty alcohols to aldehydes. Due to its excellent conductivity and ability to withstand higher temperature, the product is used in electronics as a precursor for thin film deposition. Thin films of ruthenium and its derivatives are used in the fabrication of memory devices, microelectromechanical systems (MEMS) and integrated circuits. It can be used in the preparation of electrodes for electrochemical cells due to its good conductivity and stability. Ruthenium(III) chloride hydrate is used in the synthesis of ruthenium nanoparticles, which have applications in catalysis, electronics, and material science. Ruthenium compounds are being researched for their potential use as anticancer agents due to their ability to bind to DNA and inhibit cell proliferation. In addition, ruthenium(III) chloride hydrate is utilized in the field of solar energy. It is used as a sensitizer in dye-sensitized solar cells (DSSCs). DSSCs are an alternative to traditional silicon-based photovoltaic cells with low cost and easy fabrication process. Ruthenium-based dyes absorb light and transfer electrons, initiating the energy conversion process in DSSCs.

Features and Benefits

Ruthenium(III) Chloride hydrate ReagentPlus® has been designed and tested keeping the requirements of research applications with low insoluble matters, specifications ensuring the material is suitable for high-performance applications and provides consistency in experimental and industrial processes.

Legal Information

ReagentPlus is a registered trademark of Merck KGaA, Darmstadt, Germany

signalword

Danger

Hazard Classifications

Acute Tox. 4 Oral - Aquatic Chronic 2 - Eye Dam. 1 - Skin Corr. 1B

Storage Class

8A - Combustible corrosive hazardous materials

wgk_germany

WGK 3

flash_point_f

Not applicable

flash_point_c

Not applicable

ppe

Eyeshields, Faceshields, Gloves, type P3 (EN 143) respirator cartridges


Elija entre una de las versiones más recientes:

Certificados de análisis (COA)

Lot/Batch Number

¿No ve la versión correcta?

Si necesita una versión concreta, puede buscar un certificado específico por el número de lote.

¿Ya tiene este producto?

Encuentre la documentación para los productos que ha comprado recientemente en la Biblioteca de documentos.

Visite la Librería de documentos

TiO 2 nanotube-supported ruthenium (III) hydrated oxide: A highly active catalyst for selective oxidation of alcohols by oxygen.
Bavykin DV, et al.
J. Catal., 235(1), 10-17 (2005)
Meser M Ali et al.
Journal of nanomedicine & nanotechnology, 10(6), 35248/2157-35248/7439 (2020-01-30)
Dye-sensitized solar cells (DSSCs) have attracted enormous attention in the last couple of decades due to their relatively small size, low cost and minimal environmental impact. DSSCs convert solar energy to electrical energy with the aid of a sensitizing dye.
Cho, C.S. et al.
Tetrahedron Letters, 40, 1499-1499 (1999)
Won-Hee Kim et al.
Organic letters, 8(12), 2543-2545 (2006-06-02)
An efficient oxidant-free oxidation for a wide range of alcohols was achieved by a recyclable ruthenium catalyst. The catalyst was prepared from readily available reagents by a one-pot synthesis through nanoparticle generation and gelation. [structure: see text]
Synthesis of ruthenium complexes and their catalytic applications: A review
Hafeez J, et al.
Arabian Journal of Chemistry, 15, 104165-104165 (2022)

Artículos

Hydrogen is one of the most important resources in providing food, fuel, and chemical products for our everyday life. Sustainable catalytic hydrogen production from bioethanol has gained significant attention in recent years due to globally diminishing fossil fuel supplies, which have necessitated the search for new chemical feedstocks.

The prevailing strategies for heat and electric-power production that rely on fossil and fission fuels are having a negative impact on the environment and on our living conditions.

Nuestro equipo de científicos tiene experiencia en todas las áreas de investigación: Ciencias de la vida, Ciencia de los materiales, Síntesis química, Cromatografía, Analítica y muchas otras.

Póngase en contacto con el Servicio técnico